English

If a Variable X Takes Values 0, 1, 2,..., N with Frequencies Nc0, Nc1, Nc2 , ... , Ncn, Then Write Variance X. - Mathematics

Advertisements
Advertisements

Question

If a variable X takes values 0, 1, 2,..., n with frequencies nC0nC1nC2 , ... , nCn, then write variance X.

Solution

\[x = \frac{\sum^n_{i = 0} x_i f_i}{\sum^n_{i = 0} f_i} = \frac{0 \times ^{n}{}{C}_o + 1 \times^{n}{}{C}_1 + . . . + n \times ^{n}{}{C}_n}{T^{n}{}{C}_o +^{n}{}{C}_1 + . . . +^{n}{}{C}_n}\]

\[ \Rightarrow x = \frac{n \times 2^{n - 1}}{\frac{2^n}{n + 1}}\]

\[ = \frac{n\left( n + 1 \right)}{2}\]

\[ \therefore Var(X) = \sigma^2 \]

\[ = \frac{1}{n} \sum^n_{i = 0} \left( x_i - x \right)^2 \]

\[ = \frac{1}{n} \left[ \left( 0 + 1 + 2 + . . . . + n \right) - nx \right]^2 \]

\[ \Rightarrow \sigma^2 = \frac{1}{n} \left[ \frac{n\left( n + 1 \right)}{2} - \frac{n \times n\left( n + 1 \right)}{2} \right]^2 \]

\[ = \frac{1}{n} \left[ \frac{n\left( n + 1 \right)}{2}\left( 1 - n \right) \right]^2 \]

\[ = \frac{n^2}{4n} \left( n + 1 \right)^2 \left( n - 1 \right)^2 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.8 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.8 | Q 7 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Table below shows the frequency f with which 'x' alpha particles were radiated from a diskette 

x : 0 1 2 3 4 5 6 7 8 9 10 11 12
f : 51 203 383 525 532 408 273 139 43 27 10 4 2

Calculate the mean and variance.

 

 

Write the variance of first n natural numbers.

 

If x1x2, ..., xn are n values of a variable X and y1y2, ..., yn are n values of variable Y such that yi = axi + bi = 1, 2, ..., n, then write Var(Y) in terms of Var(X).

 

Let x1x2, ..., xn be values taken by a variable X and y1y2, ..., yn be the values taken by a variable Y such that yi = axi + bi = 1, 2,..., n. Then,


If two variates X and Y are connected by the relation \[Y = \frac{a X + b}{c}\] , where abc are constants such that ac < 0, then

 

Find the variance and standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59


Calculate variance of the following data:

Class interval Frequency
4 – 8 3
8 – 12 6
12 – 16 4
16 – 20 7

Mean `(barx) = (f_ix_i)/(f_i) = (3 xx 6 + 6 xx 10 + 4 xx 14 + 7 xx 18)/20` = 13


Calculate mean, variation and standard deviation of the following frequency distribution:

Classes Frequency
1 – 10 11
10 – 20 29
20 – 30 18
30 – 40 4
40 – 50 5
50 – 60 3

Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. Then variance of 4, 8, 10, 12, 16, 34 will be ______.


Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is ______.


Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is ______.


The following information relates to a sample of size 60 `sumx^2` = 18000 and `sumx` = 960, then the variance is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×