English

If Two Variates X and Y Are Connected by the Relation Y = a X + B C , Where A, B, C Are Constants Such that Ac < 0, Then - Mathematics

Advertisements
Advertisements

Question

If two variates X and Y are connected by the relation \[Y = \frac{a X + b}{c}\] , where abc are constants such that ac < 0, then

 

Options

  •   \[\sigma_Y = \frac{a}{c} \sigma_X\]

  • \[\sigma_Y = - \frac{a}{c} \sigma_X\]

  •  \[\sigma_Y = \frac{a}{c} \sigma_X + b\]

  • none of these

     
MCQ

Solution

 \[\sigma_Y = - \frac{a}{c} \sigma_X\]

\[Y = \frac{aX + b}{c}\]

\[ Y = \frac{\sum^n_{i = 1} \frac{aX + b}{c}}{n}\]

\[ = \frac{\frac{a \sum^n_{i = 1} X + nb}{c}}{n}\]

\[ = \frac{\frac{a}{c} \sum^n_{i = 1} X}{n} + \frac{b}{c}\]

\[ = \frac{aX}{c} + \frac{b}{c}\]

\[\text{ We know: }  \]

\[Var (X) = \frac{\sum^n_{i = 1} \left( x_i - X \right)^2}{n}\]

\[ = \sigma^2 \]

\[Var(Y) = \frac{\sum^n_{i = 1} ( y_i - Y )^2}{n}\]

\[ = \frac{\sum^n_{i = 1} \left( \frac{aX}{c} + \frac{b}{c} - \frac{a}{c}X - \frac{b}{c} \right)^2}{n} \]

\[ = \frac{\sum^n_{i = 1} \left( \frac{aX}{c} - \frac{a}{c}X \right)^2}{n}\]

\[ = \left( \frac{a}{c} \right)^2 \frac{\sum^n_{i = 1} \left( x_i - X \right)^2}{n}\]

\[ = \left( \frac{a}{c} \right)^2 \sigma^2 \]

\[SD \text{ of  } Y ( \sigma_y ) = \sqrt{\left( \frac{a}{c} \right)^2 \sigma^2}\]

\[ = \left| \frac{a}{c} \right|\sigma\]

\[ac < 0\]

\[ \Rightarrow a < 0 \text{ or }  c < 0 \]

\[ \therefore \left| \frac{a}{c} \right| = - \frac{a}{c}\]

\[\Rightarrow \sigma_Y = - \frac{a}{c} \sigma_X\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.9 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.9 | Q 14 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Table below shows the frequency f with which 'x' alpha particles were radiated from a diskette 

x : 0 1 2 3 4 5 6 7 8 9 10 11 12
f : 51 203 383 525 532 408 273 139 43 27 10 4 2

Calculate the mean and variance.

 

 

Write the variance of first n natural numbers.

 

If x1x2, ..., xn are n values of a variable X and y1y2, ..., yn are n values of variable Y such that yi = axi + bi = 1, 2, ..., n, then write Var(Y) in terms of Var(X).

 

If a variable X takes values 0, 1, 2,..., n with frequencies nC0nC1nC2 , ... , nCn, then write variance X.


Let x1x2, ..., xn be values taken by a variable X and y1y2, ..., yn be the values taken by a variable Y such that yi = axi + bi = 1, 2,..., n. Then,


Find the variance and standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59


Calculate variance of the following data:

Class interval Frequency
4 – 8 3
8 – 12 6
12 – 16 4
16 – 20 7

Mean `(barx) = (f_ix_i)/(f_i) = (3 xx 6 + 6 xx 10 + 4 xx 14 + 7 xx 18)/20` = 13


Calculate mean, variation and standard deviation of the following frequency distribution:

Classes Frequency
1 – 10 11
10 – 20 29
20 – 30 18
30 – 40 4
40 – 50 5
50 – 60 3

Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. Then variance of 4, 8, 10, 12, 16, 34 will be ______.


Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is ______.


Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is ______.


The following information relates to a sample of size 60 `sumx^2` = 18000 and `sumx` = 960, then the variance is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×