Advertisements
Advertisements
Question
Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. Then variance of 4, 8, 10, 12, 16, 34 will be ______.
Options
23.23
25.33
46.66
93.32
Solution
Variance of the data 2, 4, 5, 6, 8, 17 is 23.33. Then, the variance of 4, 8, 10, 12, 16, and 34 will be 93.32.
Explanation:
Variance of 2, 4, 5, 6, 8, 17 is 23.33 = var (X) (say)
Using result:
If the variance of x1. x2 ....., xn is var (X)
Then the variance of ax1, ax2 ...... axn is a2 var (x)
Then variance of 4, 8, 10, 12, 16, 32
i.e 2(2), 2(4), 2(5), 2(6), 2(8), 2(17)
is (2)2 var (x)
= 22 × 23.33
= 4 × 23.33 = 93.32
APPEARS IN
RELATED QUESTIONS
Table below shows the frequency f with which 'x' alpha particles were radiated from a diskette
x : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
f : | 51 | 203 | 383 | 525 | 532 | 408 | 273 | 139 | 43 | 27 | 10 | 4 | 2 |
Calculate the mean and variance.
Write the variance of first n natural numbers.
If x1, x2, ..., xn are n values of a variable X and y1, y2, ..., yn are n values of variable Y such that yi = axi + b; i = 1, 2, ..., n, then write Var(Y) in terms of Var(X).
If a variable X takes values 0, 1, 2,..., n with frequencies nC0, nC1, nC2 , ... , nCn, then write variance X.
Let x1, x2, ..., xn be values taken by a variable X and y1, y2, ..., yn be the values taken by a variable Y such that yi = axi + b, i = 1, 2,..., n. Then,
If two variates X and Y are connected by the relation \[Y = \frac{a X + b}{c}\] , where a, b, c are constants such that ac < 0, then
Find the variance and standard deviation for the following data: 57, 64, 43, 67, 49, 59, 44, 47, 61, 59
Calculate variance of the following data:
Class interval | Frequency |
4 – 8 | 3 |
8 – 12 | 6 |
12 – 16 | 4 |
16 – 20 | 7 |
Mean `(barx) = (f_ix_i)/(f_i) = (3 xx 6 + 6 xx 10 + 4 xx 14 + 7 xx 18)/20` = 13
Calculate mean, variation and standard deviation of the following frequency distribution:
Classes | Frequency |
1 – 10 | 11 |
10 – 20 | 29 |
20 – 30 | 18 |
30 – 40 | 4 |
40 – 50 | 5 |
50 – 60 | 3 |
Consider the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. If 1 is added to each number, the variance of the numbers so obtained is ______.
Consider the first 10 positive integers. If we multiply each number by –1 and then add 1 to each number, the variance of the numbers so obtained is ______.
The following information relates to a sample of size 60 `sumx^2` = 18000 and `sumx` = 960, then the variance is ______.