Advertisements
Advertisements
Question
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Solution
`overline x = (sumx_i)/n`
∴ `sum x_i = n overline x`
= 100 × 20
= 2000
New `sumx_i = 2000 - 21 - 21 - 18`
= 1940
New (corrected) mean = `1940/97`
= 20
σ = `1/n sqrt(n sum x_i^2 - (sumx_i)^2)`
∴ `sum x_i^2 = (n^2 σ^2 + (sumx_i)^2)/n`
= `((100)^2 xx 9 + (2000)^2)/100`
= 900 + 20 × 2000
= 900 + 40000
= 40900
Exact value of `sumx_i^2` = 40900 − (21)2 − (21)2 − (18)2
= 40900 − 441 − 441 − 324
= 39694
New (corrected) standard deviation = `1/97 sqrt(97 xx 39634 - (1940)^2)`
= `1/97 sqrt(3850318 - 3763600)`
= `1/97 xx sqrt86718`
= 3.036
APPEARS IN
RELATED QUESTIONS
Find the mean and variance for the first 10 multiples of 3.
Find the mean and variance for the data.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.
Find the mean, variance and standard deviation for the data:
2, 4, 5, 6, 8, 17.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.
Find the standard deviation for the following data:
x : | 3 | 8 | 13 | 18 | 23 |
f : | 7 | 10 | 15 | 10 | 6 |
Calculate the standard deviation for the following data:
Class: | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 | 180-210 |
Frequency: | 9 | 17 | 43 | 82 | 81 | 44 | 24 |
Calculate the mean, median and standard deviation of the following distribution:
Class-interval: | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 |
Frequency: | 2 | 3 | 8 | 12 | 16 | 5 | 2 | 3 |
Find the mean and variance of frequency distribution given below:
xi: | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
fi: | 6 | 4 | 5 | 1 |
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean | 42 | 32 | 40.9 |
Standard Deviation | 12 | 15 | 20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.
If X and Y are two variates connected by the relation
In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.
If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.
If v is the variance and σ is the standard deviation, then
The standard deviation of the data:
x: | 1 | a | a2 | .... | an |
f: | nC0 | nC1 | nC2 | .... | nCn |
is
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is
Show that the two formulae for the standard deviation of ungrouped data.
`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.
The mean and standard deviation of a set of n1 observations are `barx_1` and s1, respectively while the mean and standard deviation of another set of n2 observations are `barx_2` and s2, respectively. Show that the standard deviation of the combined set of (n1 + n2) observations is given by
S.D. = `sqrt((n_1(s_1)^2 + n_2(s_2)^2)/(n_1 + n_2) + (n_1n_2 (barx_1 - barx_2)^2)/(n_1 + n_2)^2)`
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.
Standard deviations for first 10 natural numbers is ______.
The standard deviation is ______to the mean deviation taken from the arithmetic mean.