Advertisements
Advertisements
Question
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Solution
xpenditure(Rs) |
\[f_i\]
|
Midpoint \[\left( x_i \right)\]
|
\[f_i x_i\]
|
\[f_i x_i\]
|
\[\left( x_i - \bar{X} \right)^2\]
|
\[ f \left ( x_i - \bar{X} \right)^2\]
|
0−10 | 14 | 5 | 70 | - 21.1 | 445.21 | 6233.94 |
10−20 | 13 | 15 | 195 | - 11.1 | 123.21 | 1601.73 |
20−30 | 27 | 25 | 675 | -1.1 | 1.21 | 34.67 |
30−40 | 21 | 35 | 735 | 8.9 | 79.21 | 1663.41 |
40−50 | 15 | 45 | 675 | 18.9 | 357.21 | 5358.15 |
\[\sum f_i = 90\] |
\[\sum f_i x_i = 2350\]
|
\[\sum f_i \left( x_i - \bar{X} \right)^2 = 14891 . 9\] |
Mean,
APPEARS IN
RELATED QUESTIONS
Find the mean and variance for the data.
6, 7, 10, 12, 13, 4, 8, 12
The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 - 36 | 37 - 40 | 41 - 44 | 45 - 48 | 49 - 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]
The following is the record of goals scored by team A in a football session:
No. of goals scored |
0 |
1 |
2 |
3 |
4 |
No. of matches |
1 |
9 |
7 |
5 |
3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
- If wrong item is omitted.
- If it is replaced by 12.
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data:
227, 235, 255, 269, 292, 299, 312, 321, 333, 348.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.
The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.
Calculate the standard deviation for the following data:
Class: | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 | 180-210 |
Frequency: | 9 | 17 | 43 | 82 | 81 | 44 | 24 |
Calculate the A.M. and S.D. for the following distribution:
Class: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 18 | 16 | 15 | 12 | 10 | 5 | 2 | 1 |
The weight of coffee in 70 jars is shown in the following table:
Weight (in grams): | 200–201 | 201–202 | 202–203 | 203–204 | 204–205 | 205–206 |
Frequency: | 13 | 27 | 18 | 10 | 1 | 1 |
Determine the variance and standard deviation of the above distribution.
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.
In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.
If v is the variance and σ is the standard deviation, then
The standard deviation of the data:
x: | 1 | a | a2 | .... | an |
f: | nC0 | nC1 | nC2 | .... | nCn |
is
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is
A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.
Mean and standard deviation of 100 observations were found to be 40 and 10, respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
The standard deviation is ______to the mean deviation taken from the arithmetic mean.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.