English

The Weight of Coffee in 70 Jars is Shown in the Following Table: - Mathematics

Advertisements
Advertisements

Question

The weight of coffee in 70 jars is shown in the following table:                                                  

Weight (in grams): 200–201 201–202 202–203 203–204 204–205 205–206
Frequency: 13 27 18 10 1 1

Determine the variance and standard deviation of the above distribution.  

Solution

Weight (in grams) Mid-Values
\[\left( x_i \right)\]
Frequency
\[\left( f_i \right)\]
 

\[d_i = x_i - 202 . 5\]
 

\[d_i^2\]
 

\[f_i d_i\]
 

\[f_i d_i^2\]
200–201 200.5 13 −2 4 −26 52
201–202 201.5 27 −1 1 −27 27
202–203 202.5 18 0 0 0 0
203–204 203.5 10 1 1 10 10
204–205 204.5 1 2 4 2 4
205–206 205.5 1 3 9 3 9
    N =
\[\sum_{} f_i = 70\]
   
\[\sum_{} f_i d_i = - 38\]
 

\[\sum_{}f_i d_i^2 = 102\]

Now,

Variance, 

\[\sigma^2\]
\[= \left( \frac{1}{N} \sum_{} f_i d_i^2 \right) - \left( \frac{1}{N} \sum_{} f_i d_i \right)^2 \]
\[ = \left( \frac{1}{70} \times 102 \right) - \left( \frac{1}{70} \times \left( - 38 \right) \right)^2 \]
\[ = 1 . 457 - 0 . 295\]
\[ = 1 . 162 gm\]
Standard deviation,
\[\sigma\] = \[\sqrt{\text{ Variance} } = \sqrt{1 . 162} = 1 . 08 \text{ gm }\]
 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.6 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.6 | Q 7 | Page 42

RELATED QUESTIONS

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.


The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.


The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

 

Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the standard deviation for the following data:

Class: 0-30 30-60 60-90 90-120 120-150 150-180 180-210
Frequency: 9 17 43 82 81 44 24

Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


Two plants A and B of a factory show following results about the number of workers and the wages paid to them 

  Plant A Plant B
No. of workers 5000 6000
Average monthly wages Rs 2500 Rs 2500
Variance of distribution of wages 81 100

In which plant A or B is there greater variability in individual wages?

 

 


The means and standard deviations of heights ans weights of 50 students of a class are as follows: 

  Weights Heights
Mean 63.2 kg 63.2 inch
Standard deviation 5.6 kg 11.5 inch

Which shows more variability, heights or weights?

 

Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


The standard deviation of first 10 natural numbers is


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.


Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.


Standard deviations for first 10 natural numbers is ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×