English

Find the mean and variance for the data. 6, 7, 10, 12, 13, 4, 8, 12 - Mathematics

Advertisements
Advertisements

Question

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12

Sum

Solution

Mean `overlinex = (sumx_i)/n`

= `(6 + 7 + 10 + 12 + 13 + 4 + 8 + 12)/8`

= `72/8`

= 9

xi `x_i - overline x` `(x_i - overline x)^2`
6 −3 9
7 −2 4
10 1 1
12 3 9
13 4 16
4 −5 25
8 −1 1
12 3 9
    74

Variance = `(sum (x_i - overline x)^2)/n`

= `74/8`

= 9.25

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Statistics - Exercise 15.2 [Page 371]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 15 Statistics
Exercise 15.2 | Q 1 | Page 371

RELATED QUESTIONS

Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Find the standard deviation for the following distribution:

x : 4.5 14.5 24.5 34.5 44.5 54.5 64.5
f : 1 5 12 22 17 9 4

Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Find the mean and variance of frequency distribution given below:

xi: 1 ≤ < 3 3 ≤ < 5 5 ≤ < 7 7 ≤ < 10
fi: 6 4 5 1

Two plants A and B of a factory show following results about the number of workers and the wages paid to them 

  Plant A Plant B
No. of workers 5000 6000
Average monthly wages Rs 2500 Rs 2500
Variance of distribution of wages 81 100

In which plant A or B is there greater variability in individual wages?

 

 


Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

Find the coefficient of variation for the following data:

Size (in cms): 10-15 15-20 20-25 25-30 30-35 35-40
No. of items: 2 8 20 35 20 15

If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

The standard deviation of first 10 natural numbers is


The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


Show that the two formulae for the standard deviation of ungrouped data.

`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.


A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


Find the standard deviation of the first n natural numbers.


The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i  = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.


The mean and standard deviation of a set of n1 observations are `barx_1` and s1, respectively while the mean and standard deviation of another set of n2 observations are `barx_2` and  s2, respectively. Show that the standard deviation of the combined set of (n1 + n2) observations is given by

S.D. = `sqrt((n_1(s_1)^2 + n_2(s_2)^2)/(n_1 + n_2) + (n_1n_2 (barx_1 - barx_2)^2)/(n_1 + n_2)^2)`


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Standard deviations for first 10 natural numbers is ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×