English

Calculate the A.M. and S.D. for the following distribution: Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 Frequency: 18 16 15 12 10 5 2 1 - Mathematics

Advertisements
Advertisements

Question

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

Solution

Class
 

\[f_i\]
Midpoint
\[\left( x_i \right)\]
 

\[u_i = \frac{x_i - 35}{10}\]
 

\[f_i u_i\]
 

\[f_i {u_i}^2\]
0−10 18 5
 
-3
- 54
162
10−20 16 15
-2
- 32
64
20−30 15 25
-1
 
- 15
15
30−40 12 35 0 0 0
40−50 10 45 1 10 10
50−60 5 55 2 10 20
60−70 2 65 3 6 18
70−80 1 75 4 4 16
 
 

\[\sum f_i = 79\]
   
 

\[\sum f_i u_i = - 71\]
 

\[\sum f_i {u_i}^2 = 305\]
\[\bar{X} = a + h\left( \frac{\sum f_i u_i}{N} \right) = 35 + 10\left( \frac{- 71}{79} \right) = 26 . 01\]

AM = 26.01

\[\sigma^2 = h^2 \left[ \frac{\sum f_i {u_i}^2}{N} - \left( \frac{\sum f_i u_i}{N} \right)^2 \right] = 100\left[ \frac{305}{79} - \frac{5041}{6241} \right] = 305 . 20\]

\[\sigma = \sqrt{305 . 20} = 17 . 47\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.6 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.6 | Q 3 | Page 42

RELATED QUESTIONS

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The diameters of circles (in mm) drawn in a design are given below:

Diameters 33 - 36 37 - 40 41 - 44 45 - 48 49 - 52
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]


The following is the record of goals scored by team A in a football session:

No. of goals scored

0

1

2

3

4

No. of matches

1

9

7

5

3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

 

The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?


The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


Find the coefficient of variation for the following data:

Size (in cms): 10-15 15-20 20-25 25-30 30-35 35-40
No. of items: 2 8 20 35 20 15

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.


Let abcdbe the observations with mean m and standard deviation s. The standard deviation of the observations a + kb + kc + kd + ke + k is


The standard deviation of first 10 natural numbers is


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

Show that the two formulae for the standard deviation of ungrouped data.

`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.


Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×