हिंदी

Calculate the Mean and S.D. for the Following Data:Expenditure in Rs:0-1010-2020-3030-4040-50frequency:1413272115 - Mathematics

Advertisements
Advertisements

प्रश्न

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

उत्तर

xpenditure(Rs)
\[f_i\]

Midpoint

\[\left( x_i \right)\]
\[f_i x_i\]
\[f_i x_i\]
\[\left( x_i - \bar{X} \right)^2\]
\[ f \left ( x_i - \bar{X} \right)^2\]
0−10 14 5 70 - 21.1 445.21 6233.94
10−20 13 15 195 - 11.1 123.21 1601.73
20−30 27 25 675 -1.1 1.21 34.67
30−40 21 35 735 8.9 79.21 1663.41
40−50 15 45 675 18.9 357.21 5358.15
  \[\sum f_i = 90\]  
\[\sum f_i x_i = 2350\]
    \[\sum f_i \left( x_i - \bar{X} \right)^2 = 14891 . 9\]

Mean,

\[\bar{X} = \frac{2350}{90} = 26 . 11\]
Variance,
\[\sigma^2 = \frac{14891 . 9}{90} = 165 . 47\]
\[SD, \sigma = \sqrt{165 . 47} = 12 . 86\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.6 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.6 | Q 1 | पृष्ठ ४१

संबंधित प्रश्न

Find the mean and variance for the first 10 multiples of 3.


The following is the record of goals scored by team A in a football session:

No. of goals scored

0

1

2

3

4

No. of matches

1

9

7

5

3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?


Find the standard deviation for the following distribution:

x : 4.5 14.5 24.5 34.5 44.5 54.5 64.5
f : 1 5 12 22 17 9 4

Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Find the mean and variance of frequency distribution given below:

xi: 1 ≤ < 3 3 ≤ < 5 5 ≤ < 7 7 ≤ < 10
fi: 6 4 5 1

The means and standard deviations of heights ans weights of 50 students of a class are as follows: 

  Weights Heights
Mean 63.2 kg 63.2 inch
Standard deviation 5.6 kg 11.5 inch

Which shows more variability, heights or weights?

 

Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.

 

In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.


If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

If v is the variance and σ is the standard deviation, then

 


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


Show that the two formulae for the standard deviation of ungrouped data.

`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.


Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i  = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.


The mean and standard deviation of a set of n1 observations are `barx_1` and s1, respectively while the mean and standard deviation of another set of n2 observations are `barx_2` and  s2, respectively. Show that the standard deviation of the combined set of (n1 + n2) observations is given by

S.D. = `sqrt((n_1(s_1)^2 + n_2(s_2)^2)/(n_1 + n_2) + (n_1n_2 (barx_1 - barx_2)^2)/(n_1 + n_2)^2)`


If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×