Advertisements
Advertisements
प्रश्न
If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.
उत्तर
Given that `n = 18, sum(x - 5) = 3, sum(x - 5)^2` = 43
∴ Mean = `A + (sum(x - 5))/n`
= `5 + 3/18`
= `93/18`
= 5.166
= 5.17
And S.D. = `sqrt((sum(x - 5)^2)/N - [(sum(x - 5)^2)/N]^2`
= `sqrt(43/18 - (3/18)^2`
= `sqrt(2.39 - (0.166)^2`
= `sqrt(2.39 - 0.27)`
= 1.54
Hence, the required mean is 5.17 and S.D. = 1.54
APPEARS IN
संबंधित प्रश्न
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.
The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.
The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.
Show that the two formulae for the standard deviation of ungrouped data
\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and
\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\] are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]
Find the standard deviation for the following data:
x : | 3 | 8 | 13 | 18 | 23 |
f : | 7 | 10 | 15 | 10 | 6 |
Calculate the mean, median and standard deviation of the following distribution:
Class-interval: | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 |
Frequency: | 2 | 3 | 8 | 12 | 16 | 5 | 2 | 3 |
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
The means and standard deviations of heights ans weights of 50 students of a class are as follows:
Weights | Heights | |
Mean | 63.2 kg | 63.2 inch |
Standard deviation | 5.6 kg | 11.5 inch |
Which shows more variability, heights or weights?
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.
In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is
Show that the two formulae for the standard deviation of ungrouped data.
`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.
Life of bulbs produced by two factories A and B are given below:
Length of life (in hours) |
Factory A (Number of bulbs) |
Factory B (Number of bulbs) |
550 – 650 | 10 | 8 |
650 – 750 | 22 | 60 |
750 – 850 | 52 | 24 |
850 – 950 | 20 | 16 |
950 – 1050 | 16 | 12 |
120 | 120 |
The bulbs of which factory are more consistent from the point of view of length of life?
Find the standard deviation of the first n natural numbers.
Mean and standard deviation of 100 observations were found to be 40 and 10, respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.
The standard deviation is ______to the mean deviation taken from the arithmetic mean.