Advertisements
Advertisements
प्रश्न
The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.
उत्तर
Let x1,,x2,,x3 , ..., x15 be the given observations.
Variance X is given as 4.
If \[\bar{ X} \] is the mean of the given observations, then we get:
\[\Rightarrow \text{ Variance } X = \frac{1}{15} \sum^{15}_{i = 1} \left( x_i - X \right)^2 \]
\[ = 4\]
Let u1,u2,u3 ... u15 be the new observations such that
\[u_i = x_i + 9 \left( for i = 1, 2 , 3, . . . , 15 \right) . . . . (1) \]
\[ \bar{U} = \frac{1}{n} \sum^{15}_{i = 1} u_i \]
\[ = \frac{1}{15} \sum^{15}_{i = 1} \left( x_i + 9 \right) \]
\[ = \frac{1}{15} \sum^{15}_{i = 1} x_i+ \frac{9 \times 15}{15} \left[ \text{as } \sum^{15}_{i = 1} 9 = 9 \times 15 \right]\]
\[ = X + 9 . . . (2)\]
\[ u_i - \bar{U} = \left( x_i + 9 \right) - \left( 9 + \bar{X} \right) \left[\text{ from eq (1) and eq (2) } \right]\]
\[ = x_i - \bar{X}\]
\[ \Rightarrow \frac{1}{15} \times \left( u_i - \bar{U} \right)^2 = \frac{1}{15} \left( x_i - \bar{X} \right)^2 \left[ \text{ squaring both thesides and then dividing by 15} \right]\]
\[ \Rightarrow \frac{1}{15} \times \sum^{15}_{i = 1} \left( u_i - \bar{U} \right)^2 = \frac{1}{15} \times \sum^{15}_{i = 1} \left( x_i - \bar{X} \right)^2 \]
\[ \Rightarrow \frac{1}{15} \times \sum^{15}_{i = 1} \left( u_i - \bar{U} \right)^2 = 4\]
\[ \Rightarrow \text{ Variance } \left( U \right) = 4 \]
Thus, variance of the new observation is 4.
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the first 10 multiples of 3.
Find the mean and variance for the data.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
Given that `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axn are `abarx` and a2 σ2, respectively (a ≠ 0).
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Find the mean, variance and standard deviation for the data:
2, 4, 5, 6, 8, 17.
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.
The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.
Find the standard deviation for the following distribution:
x : | 4.5 | 14.5 | 24.5 | 34.5 | 44.5 | 54.5 | 64.5 |
f : | 1 | 5 | 12 | 22 | 17 | 9 | 4 |
A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean | 42 | 32 | 40.9 |
Standard Deviation | 12 | 15 | 20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.
In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.
If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is
Let x1, x2, ..., xn be n observations. Let \[y_i = a x_i + b\] for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\] is 48 and their standard deviation is 12, the mean of \[y_i 's\] is 55 and standard deviation of \[y_i 's\] is 15, the values of a and b are
The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is
Show that the two formulae for the standard deviation of ungrouped data.
`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.
A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.
Find the standard deviation of the first n natural numbers.
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
Mean and standard deviation of 100 observations were found to be 40 and 10, respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.
Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.