हिंदी

The Mean and Standard Deviation of Marks Obtained by 50 Students of a Class in Three Subjects, Mathematics, Physics and Chemistry Are Given Below: - Mathematics

Advertisements
Advertisements

प्रश्न

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

उत्तर

We know: \[CV = \frac{\sigma}{\bar{X}} \times 100\]

\[\bar{{X_m}} = 42, \sigma_m = 12\]

\[ \bar{{X_p}} = 32, \sigma_p = 15\]

\[ \bar{{X_c}} = 40 . 9, \sigma_c = 20\]

CV of mathematics marks 

\[= \frac{12}{42} \times 100 = \frac{1200}{42} = 28 . 57\]
CV of physics marks ​
 
\[= \frac{15}{32} \times 100 = \frac{1500}{32} = 46 . 87\]
CV of chemistry marks  \[= \frac{20}{40 . 9} \times 100 = \frac{2000}{40 . 9} = 48 . 89\]

Since CV of chemistry is the greatest, the variability of marks in chemistry is the highest and that of mathematics is the lowest.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.7 | Q 7 | पृष्ठ ४८

संबंधित प्रश्न

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12


Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The diameters of circles (in mm) drawn in a design are given below:

Diameters 33 - 36 37 - 40 41 - 44 45 - 48 49 - 52
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]


The following is the record of goals scored by team A in a football session:

No. of goals scored

0

1

2

3

4

No. of matches

1

9

7

5

3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

Find the coefficient of variation for the following data:

Size (in cms): 10-15 15-20 20-25 25-30 30-35 35-40
No. of items: 2 8 20 35 20 15

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.


The standard deviation of first 10 natural numbers is


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


Find the standard deviation of the first n natural numbers.


The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i  = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.


Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×