Advertisements
Advertisements
प्रश्न
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
उत्तर
Size (cm) |
\[f_i\]
|
Midpoint
\[\left( x_i \right)\]
|
\[u_i = \frac{x_i - 27 . 5}{5}\]
|
\[f_i u_i\]
|
\[f_i {u_i}^2\]
|
10−15 | 2 | 12.5 |
- 3
|
- 6
|
18 |
15−20 | 8 | 17.5 |
- 2
|
- 16
|
32 |
20−25 | 20 | 22.5 |
- 1
|
- 20
|
20 |
25−30 | 35 | 27.5 | 0 | 0 | 0 |
30−35 | 20 | 32.5 | 1 | 20 | 20 |
35−40 | 15 | 37.5 | 2 | 30 | 60 |
\[\sum f_i = N = 100\]
|
\[\sum f_i u_i = 8 \]
|
\[\sum f_i {u_i}^2 = 150\]
|
Here,
\[CV = \frac{\sigma}{\bar{X}} \times 100\]
\[ = \frac{6 . 11}{27 . 9} \times 100 = 21 . 9\]
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the data.
6, 7, 10, 12, 13, 4, 8, 12
Find the mean and variance for the first n natural numbers.
Find the mean and variance for the first 10 multiples of 3.
The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 - 36 | 37 - 40 | 41 - 44 | 45 - 48 | 49 - 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]
The following is the record of goals scored by team A in a football session:
No. of goals scored |
0 |
1 |
2 |
3 |
4 |
No. of matches |
1 |
9 |
7 |
5 |
3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
- If wrong item is omitted.
- If it is replaced by 12.
Find the mean, variance and standard deviation for the data:
2, 4, 5, 6, 8, 17.
The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.
The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.
The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.
Show that the two formulae for the standard deviation of ungrouped data
\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and
\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\] are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]
Find the standard deviation for the following distribution:
x : | 4.5 | 14.5 | 24.5 | 34.5 | 44.5 | 54.5 | 64.5 |
f : | 1 | 5 | 12 | 22 | 17 | 9 | 4 |
Find the standard deviation for the following data:
x : | 3 | 8 | 13 | 18 | 23 |
f : | 7 | 10 | 15 | 10 | 6 |
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
If v is the variance and σ is the standard deviation, then
The standard deviation of the data:
x: | 1 | a | a2 | .... | an |
f: | nC0 | nC1 | nC2 | .... | nCn |
is
The standard deviation of first 10 natural numbers is
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is
Let x1, x2, ..., xn be n observations. Let \[y_i = a x_i + b\] for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\] is 48 and their standard deviation is 12, the mean of \[y_i 's\] is 55 and standard deviation of \[y_i 's\] is 15, the values of a and b are
Life of bulbs produced by two factories A and B are given below:
Length of life (in hours) |
Factory A (Number of bulbs) |
Factory B (Number of bulbs) |
550 – 650 | 10 | 8 |
650 – 750 | 22 | 60 |
750 – 850 | 52 | 24 |
850 – 950 | 20 | 16 |
950 – 1050 | 16 | 12 |
120 | 120 |
The bulbs of which factory are more consistent from the point of view of length of life?
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.
Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
If the variance of a data is 121, then the standard deviation of the data is ______.
The standard deviation is ______to the mean deviation taken from the arithmetic mean.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.