Advertisements
Advertisements
प्रश्न
The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.
उत्तर
\[n = 100 \]
\[\text{ Mean } = \bar{X} = 20 \]
\[SD = \sigma = 3 \]
\[\text{ Misread values are 21, 21 and } 18 . \]
\[ \frac{1}{n}\sum_{} x_i = \bar{X} \]
\[ \Rightarrow{\frac{1}{100}} \sum x_i = 20_{} \]
\[ \Rightarrow \sum x_i = 20 \times 100 = 2000_{} \left[ {\text{ This sum is incorrect due to misread values } .} \right] . . . . (1) \]
\[\text{ If three misread values are to be omitted, the total number of enteries will be 97 } . \]
\[\text{ Also, } \sum x_i = 2000 - \left( {21 - 21 - 18} \right) = 1940 \]
\[\text{ Corrected } \bar{X} ={\frac{1940}{97}} = 20 . . . . (2)\]
\[\sigma = 3 \]
\[ \Rightarrow \text{ Variance } = \sigma^2 = 9\]
\[ = \text{ Variance } = \frac{1}{n} \sum_{} {x_i}^2 - \left( \bar{X} \right)^2 \]
\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 - {20}^2 = 9\]
\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 = 9 + 400 \]
\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 = 409\]
\[ \Rightarrow \sum_{} {x_i}^2 = 409 \times 100 = 40900 \left( \text{ This is an incorrect sum due to misread values }. \right) . . . (2)\]
\[\text{ Corrected } \sum_{} {x_i}^2 = 40900 - \left( {21}^2 + {21}^2 + {18}^2 \right)\]
\[ = 40900 - 441 - 441 - 324\]
\[ = 39694 . . . . (3) \]
\[\text{ From equations (2) and (3), we get: } \]
\[\text{ Corrected variance } = {\frac{1}{n}} \sum_{} {x_i}^2 - \left( {\bar{X}} \right)^2 \]
\[ = \frac{1}{97} \times 39694 - \left( 20 \right)^2 \]
\[ = 409 . 216 - 400 \]
\[ = 9 . 216\]
\[ \text{ Corrected SD } = \sqrt{{\text{ Corrected variance} }} \]
\[ = \sqrt{{9 . 216}} \]
\[ = 3 . 0357 \]
Thus, after omitting three values, the mean would be 20 and SD would be 3.0357.
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the data.
6, 7, 10, 12, 13, 4, 8, 12
Find the mean and variance for the first 10 multiples of 3.
Find the mean and variance for the data.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 - 36 | 37 - 40 | 41 - 44 | 45 - 48 | 49 - 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]
The following is the record of goals scored by team A in a football session:
No. of goals scored |
0 |
1 |
2 |
3 |
4 |
No. of matches |
1 |
9 |
7 |
5 |
3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.
Given that `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axn are `abarx` and a2 σ2, respectively (a ≠ 0).
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
- If wrong item is omitted.
- If it is replaced by 12.
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data:
227, 235, 255, 269, 292, 299, 312, 321, 333, 348.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Calculate the A.M. and S.D. for the following distribution:
Class: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 18 | 16 | 15 | 12 | 10 | 5 | 2 | 1 |
Find the mean and variance of frequency distribution given below:
xi: | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
fi: | 6 | 4 | 5 | 1 |
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
If X and Y are two variates connected by the relation
If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.
If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is
Let x1, x2, ..., xn be n observations. Let \[y_i = a x_i + b\] for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\] is 48 and their standard deviation is 12, the mean of \[y_i 's\] is 55 and standard deviation of \[y_i 's\] is 15, the values of a and b are
Find the standard deviation of the first n natural numbers.
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.
Standard deviations for first 10 natural numbers is ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.