हिंदी

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations. - Mathematics

Advertisements
Advertisements

प्रश्न

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.

योग

उत्तर

Let those two numbers be x and y.

`overline x = 8 = (2 + 4 + 10 + 12 + 14 + x + y)/7`

or 56 = 42 + x + y or x + y = 56 − 42 = 14       ...(i)

σ2 = `1/n^2 [nsumx_i^2 - (sumx_i)^2]`

`[overline x = (sumx_i)/n     ∴ sumx_i = n overline x = 7 xx 8 = 56]`

`σ^2 = 16 = 1/49 [7 xx sumx_i^2 - (56)^2]`

∴ `7sumx_i^2` = 49 × 16 + 56 × 56

or `sumx_i^2` = 7 × 16 + 8 × 56

= 560

or 22 + 42 + 102 + 122 + 142 + x2 + y2

= 560

460 + x2 + y2 = 560

x2 + y2 = 560 – 460 = 100      ...(ii)

From equations (i) and (ii),

x2 + (14 – x)2 = 100

or 2x2 – 28x + 196 – 100 = 0

or x2 – 14x + 48 = 0

∴ (x – 6)(x – 8) = 0

∴ x = 6 or 8

∴ y = 8 or 6

∴ Those two numbers are 6 and 8.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Statistics - Miscellaneous Exercise [पृष्ठ ३८०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 15 Statistics
Miscellaneous Exercise | Q 2 | पृष्ठ ३८०

संबंधित प्रश्न

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject

Mathematics

Physics

Chemistry

Mean

42

32

40.9

Standard deviation

12

15

20

Which of the three subjects shows the highest variability in marks and which shows the lowest?


The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.

 

The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

 

The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Find the mean and variance of frequency distribution given below:

xi: 1 ≤ < 3 3 ≤ < 5 5 ≤ < 7 7 ≤ < 10
fi: 6 4 5 1

The weight of coffee in 70 jars is shown in the following table:                                                  

Weight (in grams): 200–201 201–202 202–203 203–204 204–205 205–206
Frequency: 13 27 18 10 1 1

Determine the variance and standard deviation of the above distribution.  


Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


The means and standard deviations of heights ans weights of 50 students of a class are as follows: 

  Weights Heights
Mean 63.2 kg 63.2 inch
Standard deviation 5.6 kg 11.5 inch

Which shows more variability, heights or weights?

 

Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.

 

The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


Let abcdbe the observations with mean m and standard deviation s. The standard deviation of the observations a + kb + kc + kd + ke + k is


The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i  = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×