हिंदी

Find the Mean and Variance of Frequency Distribution Given Below:Xi:1 ≤ X < 33 ≤ X < 55 ≤ X < 77 ≤ X < 10fi:6451 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean and variance of frequency distribution given below:

xi: 1 ≤ < 3 3 ≤ < 5 5 ≤ < 7 7 ≤ < 10
fi: 6 4 5 1

उत्तर

xi Mid-Values(yi) yi2 fi fi yi fyi2
1–3 2 4 6 12 24
3–5 4 16 4 16 64
5–7 6 36 5 30 180
7–10 8.5 72.25 1 8.5 72.25
      `sum f_i = 16`
 

\[\sum_{} f_i y_i = 66 . 5\]
 

\[\sum_{}$ f_i {y_i}^2 = 340 . 25\]

Therefore,

Mean =

\[\frac{\sum_{} f_i y_i}{\sum_{} f_i} = \frac{66 . 5}{16} = 4 . 16\]
Variance =\[\left( \frac{1}{N} \sum_{} f_i y_i^2 \right) - \left( \frac{1}{N} \sum_{} f {}_i y {}_i \right)^2 = \frac{1}{16} \times 340 . 25 - \left( \frac{1}{16} \times 66 . 5 \right)^2 = 21 . 26 - 17 . 22 = 4 . 04\]
 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.6 | Q 6 | पृष्ठ ४२

संबंधित प्रश्न

Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?


The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the standard deviation for the following data:

Class: 0-30 30-60 60-90 90-120 120-150 150-180 180-210
Frequency: 9 17 43 82 81 44 24

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Two plants A and B of a factory show following results about the number of workers and the wages paid to them 

  Plant A Plant B
No. of workers 5000 6000
Average monthly wages Rs 2500 Rs 2500
Variance of distribution of wages 81 100

In which plant A or B is there greater variability in individual wages?

 

 


Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.


If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

If v is the variance and σ is the standard deviation, then

 


The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


The standard deviation of first 10 natural numbers is


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i  = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.


If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Standard deviations for first 10 natural numbers is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×