Advertisements
Advertisements
प्रश्न
The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?
उत्तर
\[n = 100 \]
\[\text{ Mean } = \bar{X} = 40 \]
\[\sigma = SD = 5 . 1\]
\[\frac{1}{n}\sum x_i = \bar{X} \]
\[ \Rightarrow \sum x_i = 100 \times 40 = 4000 \left( \text{ This is an incorrect reading due to misread values . } \right)\]
\[ \text{ Corrected sum } , \sum x_i = 4000 - 50 + 40 \]
\[ = 3990\]
\[ \Rightarrow \text{ Corrected mean }= \frac{\text{ Corrected sum } }{100}\]
\[ = \frac{3990}{100}\]
\[ = 39 . 9 . . . (1)\]
To find the corrected SD:
\[\sqrt{\text{ Variance } } = \sigma \]
\[ \Rightarrow \sigma^2 = \left( 5 . 1 \right)^2 = \text{ Variance } \]
\[\text{ According to the formula } , \]
\[\frac{1}{n} \sum_{} {x_i}^2 - \left( \bar{X} \right)^2 = \text{ Variance} \]
\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 - \left( 40 \right)^2 = 26 . 01\]
\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 - 1600 = 26 . 01\]
\[ \Rightarrow \frac{1}{100} \sum_{} {x_i}^2 = 1626 . 01\]
\[ \Rightarrow \sum_{} {x_i}^2 = 162601 \left( \text{ But, this is incorrect due t o misread values } \right)\]
\[ \Rightarrow \text{ Corrected } \sum_{} {x_i}^2 = 162601 - {50}^2 + {40}^2 \]
\[ = 161701 . . . . (2)\]
\[\text{ Corrected variance } = \frac{1}{100}\text{ Corrected } \sum_{} {x_i}^2 - \left( \text{ Corrected mean } \right)^2 \]
\[ = \frac{161701}{100} - \left( 39 . 9 \right)^2 \left[\text{ using equations (1) and (2) } \right]\]
\[ = 1617 . 01 - 1592 . 01\]
\[ = 25\]
\[ \text{ Corrected SD } = \sqrt{{\text{ Corrected variance} }}\]
\[ = \sqrt{{25}} \]
\[ = 5\]
Corrected mean = 39.9
Corrected standard deviation = 5
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the data.
6, 7, 10, 12, 13, 4, 8, 12
Find the mean and variance for the data.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.
The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.
For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.
The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.
Find the standard deviation for the following data:
x : | 3 | 8 | 13 | 18 | 23 |
f : | 7 | 10 | 15 | 10 | 6 |
A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.
Calculate the mean, median and standard deviation of the following distribution:
Class-interval: | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 |
Frequency: | 2 | 3 | 8 | 12 | 16 | 5 | 2 | 3 |
Find the mean and variance of frequency distribution given below:
xi: | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
fi: | 6 | 4 | 5 | 1 |
The weight of coffee in 70 jars is shown in the following table:
Weight (in grams): | 200–201 | 201–202 | 202–203 | 203–204 | 204–205 | 205–206 |
Frequency: | 13 | 27 | 18 | 10 | 1 | 1 |
Determine the variance and standard deviation of the above distribution.
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
The means and standard deviations of heights ans weights of 50 students of a class are as follows:
Weights | Heights | |
Mean | 63.2 kg | 63.2 inch |
Standard deviation | 5.6 kg | 11.5 inch |
Which shows more variability, heights or weights?
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.
If X and Y are two variates connected by the relation
If v is the variance and σ is the standard deviation, then
The standard deviation of the data:
x: | 1 | a | a2 | .... | an |
f: | nC0 | nC1 | nC2 | .... | nCn |
is
If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.
Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.
Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.
Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.
Standard deviations for first 10 natural numbers is ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
If the variance of a data is 121, then the standard deviation of the data is ______.
The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.
The standard deviation is ______to the mean deviation taken from the arithmetic mean.