मराठी

Let A, B, C, D, E Be the Observations with Mean M and Standard Deviation S. the Standard Deviation of the Observations a + K, B + K, C + K, D + K, E + K is - Mathematics

Advertisements
Advertisements

प्रश्न

Let abcdbe the observations with mean m and standard deviation s. The standard deviation of the observations a + kb + kc + kd + ke + k is

पर्याय

  • s     

  • ks    

  •  s + k    

  • \[\frac{s}{k}\]

MCQ

उत्तर

The given observations are abcde.
Mean = m =\[\frac{a + b + c + d + e}{5}\]

\[\Rightarrow \sum_{} x_i = a + b + c + d + e = 5m\]      .....(1)

Standard deviation, s = \[\sqrt{\frac{\sum_{} x_i^2}{5} - m^2}\]

Now, consider the observations a + kb + kc + kd + ke + k.
New mean

\[= \frac{\left( a + k \right) + \left( b + k \right) + \left( c + k \right) + \left( d + k \right) + \left( e + k \right)}{5}\]

\[= \frac{a + b + c + d + e + 5k}{5}\]

\[ = \frac{5m + 5k}{5}\]

\[ = m + k\]

∴ New standard deviation

\[= \sqrt{\frac{\sum_{} \left( x_i + k \right)^2}{5} - \left( m + k \right)^2}\]

\[ = \sqrt{\frac{\sum_{} \left( x_i^2 + k^2 + 2 x_i k \right)}{5} - \left( m^2 + k^2 + 2mk \right)}\]

\[ = \sqrt{\frac{\sum_{} x_i^2}{5} + \frac{\sum_{} k^2}{5} + \frac{\sum_{} 2 x_i k}{5} - \left( m^2 + k^2 + 2mk \right)}\]

\[ = \sqrt{\frac{\sum_{} x_i^2}{5} - m^2 + \frac{5 k^2}{5} - k^2 + \frac{2k \sum_{} x_i}{5} - 2mk}\]

\[= \sqrt{\frac{\sum_{} x_i^2}{5} - m^2 + \frac{2k \times 5m}{5} - 2mk} \left[ \text{ Using } \left( 1 \right) \right]\]

\[ = \sqrt{\frac{\sum_{} x_i^2}{5} - m^2}\]

\[ = s\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Statistics - Exercise 32.9 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 32 Statistics
Exercise 32.9 | Q 16 | पृष्ठ ५१

संबंधित प्रश्‍न

Find the mean and variance for the first 10 multiples of 3.


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject

Mathematics

Physics

Chemistry

Mean

42

32

40.9

Standard deviation

12

15

20

Which of the three subjects shows the highest variability in marks and which shows the lowest?


The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

 

For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.

 

The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

Calculate the standard deviation for the following data:

Class: 0-30 30-60 60-90 90-120 120-150 150-180 180-210
Frequency: 9 17 43 82 81 44 24

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


Two plants A and B of a factory show following results about the number of workers and the wages paid to them 

  Plant A Plant B
No. of workers 5000 6000
Average monthly wages Rs 2500 Rs 2500
Variance of distribution of wages 81 100

In which plant A or B is there greater variability in individual wages?

 

 


The means and standard deviations of heights ans weights of 50 students of a class are as follows: 

  Weights Heights
Mean 63.2 kg 63.2 inch
Standard deviation 5.6 kg 11.5 inch

Which shows more variability, heights or weights?

 

From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

If v is the variance and σ is the standard deviation, then

 


If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


Find the standard deviation of the first n natural numbers.


Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


Mean and standard deviation of 100 observations were found to be 40 and 10, respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×