मराठी

The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. - Mathematics

Advertisements
Advertisements

प्रश्न

The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.
बेरीज

उत्तर

`overline x = (sumx_i)/n` or 10 = `(sumx_i)/20`

⇒ `sumx_i = 10 xx 20 = 200`

Standard deviation σ = `1/nsqrt(nsumx_i^2 - (sumx_i)^2)`

∴ `nσ = sqrt(nsumx_i^2 - (sumx_i)^2)`

or `n sumx_i^2 = n^2 σ^2 + (sumx_i)^2`

or `sumx_i^2 = (n^2 σ^2 + (sumx_i)^2)/n`

i. (a) When an observation 8 is excluded.

Addition of new observations = 200 − 8 = 192

New mean = `192/19 = 10.11`

(b) `sumx_i^2 = ((20)^2 xx 4 + (200)^2)/20`    .....`[∵ sum = 2, sumx_i = 200]`

= 80 + 10 × 200

= 2080

New `sumx_i^2 = 2080 - 8^2`

= 2080 − 64

= 2016

∴ New Standard Deviation = `1/19 sqrt(19 xx 2016 - (192)^2)`

= `1/19 xx sqrt(38304 - 36864)`

= `1/19 xx sqrt1440`

= 1.997

ii. New `sumx_i = 200 - 8 + 12`

= 204

∴ New mean = `204/20`

= 10.2

`sumx_i^2 = 2080`

New `sumx_i^2 = 2080 - 64 + 144`

= 2160

∴ New (corrected) standard deviation = `1/20 sqrt(20 xx 2160 - (204)^2)`

= `1/20 sqrt(43200 - 41616)`

= `sqrt1584/20`

= 1.99

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Miscellaneous Exercise [पृष्ठ ३८०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 15 Statistics
Miscellaneous Exercise | Q 5 | पृष्ठ ३८०

संबंधित प्रश्‍न

Find the mean and variance for the data.

6, 7, 10, 12, 13, 4, 8, 12


Find the mean and variance for the first n natural numbers.


Find the mean and variance for the first 10 multiples of 3.


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The diameters of circles (in mm) drawn in a design are given below:

Diameters 33 - 36 37 - 40 41 - 44 45 - 48 49 - 52
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]


The following is the record of goals scored by team A in a football session:

No. of goals scored

0

1

2

3

4

No. of matches

1

9

7

5

3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?


The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.


Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?


The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

Two plants A and B of a factory show following results about the number of workers and the wages paid to them 

  Plant A Plant B
No. of workers 5000 6000
Average monthly wages Rs 2500 Rs 2500
Variance of distribution of wages 81 100

In which plant A or B is there greater variability in individual wages?

 

 


Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

If the sum of the squares of deviations for 10 observations taken from their mean is 2.5, then write the value of standard deviation.

 

If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

Let abcdbe the observations with mean m and standard deviation s. The standard deviation of the observations a + kb + kc + kd + ke + k is


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


Find the standard deviation of the first n natural numbers.


The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i  = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.


The mean and standard deviation of a set of n1 observations are `barx_1` and s1, respectively while the mean and standard deviation of another set of n2 observations are `barx_2` and  s2, respectively. Show that the standard deviation of the combined set of (n1 + n2) observations is given by

S.D. = `sqrt((n_1(s_1)^2 + n_2(s_2)^2)/(n_1 + n_2) + (n_1n_2 (barx_1 - barx_2)^2)/(n_1 + n_2)^2)`


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.


Standard deviations for first 10 natural numbers is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×