Advertisements
Advertisements
प्रश्न
The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 - 36 | 37 - 40 | 41 - 44 | 45 - 48 | 49 - 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]
उत्तर
The intervals to convert the given discrete data into continuous frequency distribution are as follows.
32.5 - 36.5, 36.5 - 40.5, 40.50 - 44.5, 44.5 - 48.5, 48.5 - 52.5
Let A = 42.5, h = 4,
∴ yi = `(x_i - 42.5)/4`
Class Interval | Mid-point | Frequency | yi | fiyi | yi2 | fiyi2 |
32.5 - 36.5 | 34.5 | 15 | −2 | −30 | 4 | 60 |
36.5 - 40.5 | 38.5 | 17 | −1 | −17 | 1 | 17 |
40.50 - 44.5 | 42.5 | 21 | 0 | 0 | 0 | 0 |
44.5 - 48.5 | 42.5 | 22 | 1 | 22 | 1 | 22 |
48.5 - 52.5 | 50.5 | 25 | 2 | 50 | 4 | 100 |
Sum | - | 100 | - | 25 | - | 199 |
Mean, `overlinex = A +((sumf_iy_i)/N) xx h`
= `42.5 + 25/100 xx 4`
= 42.5 + 1
= 43.5
Variance σ2 = `h^2/N^2[Nsumf_iy_i^2 - (sumf_iy_i)^2]`
= `16/(100)^2 [100 xx 199 - (25)^2]`
= `(16 xx 25)/(100 xx 100) [4 xx 199 - 25]`
= `1/25 [796 - 25]`
= `771/25`
= 30.84
∴ Standard deviation σ = `sqrt30.48` = 5.56
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the first 10 multiples of 3.
The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`
Which is more varying, the length or weight?
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations
Given that `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axn are `abarx` and a2 σ2, respectively (a ≠ 0).
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data:
227, 235, 255, 269, 292, 299, 312, 321, 333, 348.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.
For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.
The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.
Show that the two formulae for the standard deviation of ungrouped data
\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and
\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\] are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]
Find the standard deviation for the following distribution:
x : | 4.5 | 14.5 | 24.5 | 34.5 | 44.5 | 54.5 | 64.5 |
f : | 1 | 5 | 12 | 22 | 17 | 9 | 4 |
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Calculate the A.M. and S.D. for the following distribution:
Class: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 18 | 16 | 15 | 12 | 10 | 5 | 2 | 1 |
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
If X and Y are two variates connected by the relation
In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
Find the standard deviation of the first n natural numbers.
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.
Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
If the variance of a data is 121, then the standard deviation of the data is ______.
The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.