मराठी

Show that the Two Formulae for the Standard Deviation of Ungrouped Data σ = √ 1 N ∑ ( X I − X ) 2 and σ ′ = √ 1 N ∑ X 2 I − X 2 Are Equivalent, Where X = 1 N ∑ X I - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the two formulae for the standard deviation of ungrouped data 

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]

 

 

उत्तर

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\]

\[ = \sqrt{\frac{1}{n} \sum \left( x_i^2 - 2 x_i X + X^2 \right)_{}}\]

\[ = \sqrt{\frac{1}{n} \sum x^2 _i- \frac{1}{n}\sum 2 x_i X + \frac{1}{n}\sum X^2}\]

\[ = \sqrt{\frac{1}{n} \sum ^2 x_i - \frac{1}{n} \times 2X\sum x_i + \frac{1}{n} \times X^2 \sum 1}\]

\[ = \sqrt{\frac{1}{n} \sum  x^2_i - \frac{1}{n} \times 2X \times nX + \frac{1}{n} \times X^2 \times n} \left( X = \frac{1}{n} \sum x_i \right)\]

\[= \sqrt{\frac{1}{n} \sum x_i^2 - 2 X^2 +_{} X^2}\]

\[ = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]

\[ = \sigma'\]

Hence, the formulae

\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and 

\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\]  are equivalent, where

\[X = \frac{1}{n}\sum_{} x_i\].

 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Statistics - Exercise 32.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 32 Statistics
Exercise 32.4 | Q 11 | पृष्ठ २८

संबंधित प्रश्‍न

Find the mean and variance for the first n natural numbers.


Find the mean and variance for the data.

xi 6 10 14 18 24 28 30
fi 2 4 7 12 8 4 3

The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.


The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


Given that  `barx` is the mean and σ2 is the variance of n observations x1, x2, …,xn. Prove that the mean and variance of the observations ax1, ax2, ax3, …,axare `abarx` and a2 σ2, respectively (a ≠ 0).


The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Calculate the standard deviation for the following data:

Class: 0-30 30-60 60-90 90-120 120-150 150-180 180-210
Frequency: 9 17 43 82 81 44 24

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Find the mean and variance of frequency distribution given below:

xi: 1 ≤ < 3 3 ≤ < 5 5 ≤ < 7 7 ≤ < 10
fi: 6 4 5 1

The weight of coffee in 70 jars is shown in the following table:                                                  

Weight (in grams): 200–201 201–202 202–203 203–204 204–205 205–206
Frequency: 13 27 18 10 1 1

Determine the variance and standard deviation of the above distribution.  


Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.      


Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 


Show that the two formulae for the standard deviation of ungrouped data.

`sigma = sqrt((x_i - barx)^2/n)` and `sigma`' = `sqrt((x^2_i)/n - barx^2)` are equivalent.


Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


Find the standard deviation of the first n natural numbers.


The mean and standard deviation of a set of n1 observations are `barx_1` and s1, respectively while the mean and standard deviation of another set of n2 observations are `barx_2` and  s2, respectively. Show that the standard deviation of the combined set of (n1 + n2) observations is given by

S.D. = `sqrt((n_1(s_1)^2 + n_2(s_2)^2)/(n_1 + n_2) + (n_1n_2 (barx_1 - barx_2)^2)/(n_1 + n_2)^2)`


If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.


Mean and standard deviation of 100 observations were found to be 40 and 10, respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.


Standard deviations for first 10 natural numbers is ______.


The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×