Advertisements
Advertisements
प्रश्न
Find the standard deviation of the first n natural numbers.
उत्तर
`x_i` | 1 | 2 | 3 | 4 | 5 | – | – | n |
`x_i^2` | 1 | 4 | 9 | 16 | 25 | – | – | n2 |
`sumx_i = 1 + 2 + 3 + 4 + 5 + ... + n = (n(n + 1))/2`
`sumx_i^2 = 1^2 + 2^2 + 3^2 + ... + n^2 = (n(n + 1)(2n + 1))/6`
∴ S.D. `(sigma) = sqrt((sumx_i^2)/n - ((sumx_i)/n)^2`
= `sqrt((n(n + 1)(2n + 1))/(6n) - (n^2(n + 1)^2)/(4n^2))`
= `sqrt(((n + 1)(2n + 1))/6 - (n + 1)^2/4`
= `sqrt((2n^2 + 3n + 1)/6 - (n^2 + 2n + 1)/4)`
= `sqrt((4n^2 + 6n + 2 - 3n^2 - 6n - 3)/12`
= `sqrt((n^2 - 1)/12)`
Hence, the required S.D. = `sqrt((n^2 - 1)/12`
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the data.
6, 7, 10, 12, 13, 4, 8, 12
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:
Subject |
Mathematics |
Physics |
Chemistry |
Mean |
42 |
32 |
40.9 |
Standard deviation |
12 |
15 |
20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
Find the mean, variance and standard deviation for the data:
2, 4, 5, 6, 8, 17.
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.
The mean and variance of 8 observations are 9 and 9.25 respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Find the mean and variance of frequency distribution given below:
xi: | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
fi: | 6 | 4 | 5 | 1 |
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
The means and standard deviations of heights ans weights of 50 students of a class are as follows:
Weights | Heights | |
Mean | 63.2 kg | 63.2 inch |
Standard deviation | 5.6 kg | 11.5 inch |
Which shows more variability, heights or weights?
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.
The standard deviation of the data:
x: | 1 | a | a2 | .... | an |
f: | nC0 | nC1 | nC2 | .... | nCn |
is
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is
The standard deviation of first 10 natural numbers is
Let x1, x2, ..., xn be n observations. Let \[y_i = a x_i + b\] for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\] is 48 and their standard deviation is 12, the mean of \[y_i 's\] is 55 and standard deviation of \[y_i 's\] is 15, the values of a and b are
Life of bulbs produced by two factories A and B are given below:
Length of life (in hours) |
Factory A (Number of bulbs) |
Factory B (Number of bulbs) |
550 – 650 | 10 | 8 |
650 – 750 | 22 | 60 |
750 – 850 | 52 | 24 |
850 – 950 | 20 | 16 |
950 – 1050 | 16 | 12 |
120 | 120 |
The bulbs of which factory are more consistent from the point of view of length of life?
If for distribution `sum(x - 5)` = 3, `sum(x - 5)^2` = 43 and total number of items is 18. Find the mean and standard deviation.
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.
Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.
Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.
Standard deviations for first 10 natural numbers is ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.