Advertisements
Advertisements
प्रश्न
The standard deviation of the data:
x: | 1 | a | a2 | .... | an |
f: | nC0 | nC1 | nC2 | .... | nCn |
is
पर्याय
\[\left( \frac{1 + a^2}{2} \right)^n - \left( \frac{1 + a}{2} \right)^n\]
\[\left( \frac{1 + a^2}{2} \right)^{2n} - \left( \frac{1 + a}{2} \right)^n\]
\[\left( \frac{1 + a}{2} \right)^{2n} - \left( \frac{1 + a^2}{2} \right)^n\]
none of these
उत्तर
none of these
xi | fi | fixi |
\[{x_i}^2\]
|
\[f_i {x_i}^2\]
|
---|---|---|---|---|
1 |
\[^{n}{}{C}_0\]
|
\[^{n}{}{C}_0\]
|
1 | 1 |
a |
\[{n}{}{C}_1\]
|
a
\[^{n}{}{C}_1\]
|
a2 | a2
\[^{n}{}{C}_1\]
|
a2 |
\[^{n}{}{C}_2\]
|
a2
=\[^{n}{}{C}_2\]
|
a4 | a4
\[^{n}{}{C}_2\]
|
a3 |
\[^{n}{}{C}_3\]
|
a3
\[^{n}{}{C}_3\]
|
a6 | a6
\[^{n}{}{C}_3\]
|
: : : : |
: : : |
: : : |
: : : |
: : : : |
an |
\[^{n}{}{C}_n\]
|
an
\[^{n}{}{C}_n\]
|
a2n | a2n
\[^{n}{}{C}_n\]
|
\[\sum^n_{i = 1} f_i = 2^n\]
|
\[\sum^n_{i = 1} f_i x_i = \left( 1 + a \right)^n\]
|
\[\sum^n_{i = 1} f_i {x_i}^2 = \left( 1 + a^2 \right) {}^n\]
|
`"Number of terms," N = \sum_{i = 1}^2 f_i = 2^n `
` \sum _{i = 1}^2 f_i x_i = ^nC_0 + a ^nC_1 + a^2 "^nC_2 + . . . + a"^n "^nC_n = \left( 1 + a \right)^n `
`X = \frac{\sum_{i = 1}^n f_ix_i}{N}`
\[ = \frac{\left( 1 + a \right)^n}{2^n}\]
` \sum_{i = 1}^n f_i x_i^2 = \left( 1 + a^2 \right)^n`
`\sigma^2 = \text{ Variance } \left( X \right) = \frac{1}{N} \sum_{i = 1}^n f_i_x_i^2 - \left( {\sum_{i = 1}^n f_i x_i}/{N} \right)^2 `
\[ = \frac{\left( 1 + a^2 \right)^n}{2^n} - \left[ \frac{\left( 1 + a \right)^n}{2^n} \right]^2 \]
\[ = \left[ \frac{1 + a^2}{2} \right]^n - \left[ \frac{1 + a}{2} \right]^{2n} \]
\[\sigma = \sqrt{\text{ Variance } \left( X \right)} \]
\[ = \sqrt[]{\left[ \frac{1 + a^2}{2} \right]^n - \left[ \frac{1 + a}{2} \right]^{2n}}\]
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the data.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The following is the record of goals scored by team A in a football session:
No. of goals scored |
0 |
1 |
2 |
3 |
4 |
No. of matches |
1 |
9 |
7 |
5 |
3 |
For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`
Which is more varying, the length or weight?
The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.
Find the mean, variance and standard deviation for the data:
6, 7, 10, 12, 13, 4, 8, 12.
Find the mean, variance and standard deviation for the data:
227, 235, 255, 269, 292, 299, 312, 321, 333, 348.
Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.
The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.
Show that the two formulae for the standard deviation of ungrouped data
\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and
\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\] are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]
Find the standard deviation for the following data:
x : | 3 | 8 | 13 | 18 | 23 |
f : | 7 | 10 | 15 | 10 | 6 |
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Calculate the standard deviation for the following data:
Class: | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 | 180-210 |
Frequency: | 9 | 17 | 43 | 82 | 81 | 44 | 24 |
Find the mean and variance of frequency distribution given below:
xi: | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
fi: | 6 | 4 | 5 | 1 |
The weight of coffee in 70 jars is shown in the following table:
Weight (in grams): | 200–201 | 201–202 | 202–203 | 203–204 | 204–205 | 205–206 |
Frequency: | 13 | 27 | 18 | 10 | 1 | 1 |
Determine the variance and standard deviation of the above distribution.
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean | 42 | 32 | 40.9 |
Standard Deviation | 12 | 15 | 20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
Find the coefficient of variation for the following data:
Size (in cms): | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
No. of items: | 2 | 8 | 20 | 35 | 20 | 15 |
If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.
If v is the variance and σ is the standard deviation, then
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is
A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.
The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results:
Number of observations = 25, mean = 18.2 seconds, standard deviation = 3.25 seconds. Further, another set of 15 observations x1, x2, ..., x15, also in seconds, is now available and we have `sum_(i = 1)^15 x_i` = 279 and `sum_(i = 1)^15 x^2` = 5524. Calculate the standard derivation based on all 40 observations.
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.
Let x1, x2, x3, x4, x5 be the observations with mean m and standard deviation s. The standard deviation of the observations kx1, kx2, kx3, kx4, kx5 is ______.
Let x1, x2, ... xn be n observations. Let wi = lxi + k for i = 1, 2, ...n, where l and k are constants. If the mean of xi’s is 48 and their standard deviation is 12, the mean of wi’s is 55 and standard deviation of wi’s is 15, the values of l and k should be ______.
The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.