Advertisements
Advertisements
प्रश्न
The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.
उत्तर
\[\text{ Mean } = \bar{X} = 8 \]
\[n = 6 \]
\[\sigma = S . D = 4\]
\[\text{ If } x_{1,} x_{2 . . . .} x_6 \text{ are the given observations } \]
\[ X = \frac{1}{n} \times \sum^6_{i = 1} x_i \]
\[ \Rightarrow 8 = \frac{1}{6} \times \sum^6_{i = 1} x_i \]
\[\text{ Let } u_{1,} u_2 . . . . . u_6 \text{ be the new observations } \]
\[ \Rightarrow u_i = 3 x_i \left( \text{ for } i = 1, 2, 3 . . . 6 \right)\]
\[ \Rightarrow \text{ Mean of new observations } = \bar{U} = \frac{1}{n} \times \sum ^6_{i = 1} u_i \]
\[ = \frac{1}{6} \times \sum ^6 _{i = 1} 3x_i \]
\[ = 3 \times \frac{1}{6} \times \sum^ 6_{i = 1} x_i \]
\[ = 3 \bar{X} \]
\[ = 3 \times 8\]
\[ = 24\]
Thus, mean of the new observations is 24.
\[SD = \sigma_x = 4\]
\[ \sigma_x^2 = \text{ Variance } X\]
\[ \therefore \text{ Variance } X = 16\]
\[ \Rightarrow \frac{1}{6} \sum^6_{i = 1} \left( x_i - \bar{X} \right)^2 = 16 . . . \left( 1 \right)\]
\[\text{ Variance } \left( U \right) = \sigma_u^2 = \frac{1}{6} \sum^6_{i = 1} \left( u_i - \bar{U} \right)^2 \]
\[ = \frac{1}{6} \times \sum^6_{i = 1} \left( 3 x_i - 3 \bar{X} \right)^2 \]
\[ = 3^2 \times \frac{1}{6} \sum^6_{i = 1} \left( x_i - \bar{X} \right)^2 \]
\[ = 9 \times 16\]
\[ \sigma_u = \sqrt{ \text{ Variance } \left( U \right)}\]
\[ = \sqrt{9 \times 16}\]
\[ = 12\]
Thus, standard deviation of the new observations is 12.
APPEARS IN
संबंधित प्रश्न
Find the mean and variance for the first n natural numbers.
Find the mean and variance for the data.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 - 36 | 37 - 40 | 41 - 44 | 45 - 48 | 49 - 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]
The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`
Which is more varying, the length or weight?
The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
- If wrong item is omitted.
- If it is replaced by 12.
The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
Find the mean, variance and standard deviation for the data:
2, 4, 5, 6, 8, 17.
The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.
The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?
Show that the two formulae for the standard deviation of ungrouped data
\[\sigma = \sqrt{\frac{1}{n} \sum \left( x_i - X \right)^2_{}}\] and
\[\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - X^2_{}}\] are equivalent, where \[X = \frac{1}{n}\sum_{} x_i\]
Calculate the mean and S.D. for the following data:
Expenditure in Rs: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency: | 14 | 13 | 27 | 21 | 15 |
Calculate the mean, median and standard deviation of the following distribution:
Class-interval: | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 |
Frequency: | 2 | 3 | 8 | 12 | 16 | 5 | 2 | 3 |
Mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Two plants A and B of a factory show following results about the number of workers and the wages paid to them
Plant A | Plant B | |
No. of workers | 5000 | 6000 |
Average monthly wages | Rs 2500 | Rs 2500 |
Variance of distribution of wages | 81 | 100 |
In which plant A or B is there greater variability in individual wages?
Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?
The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below:
Subject | Mathematics | Physics | Chemistry |
Mean | 42 | 32 | 40.9 |
Standard Deviation | 12 | 15 | 20 |
Which of the three subjects shows the highest variability in marks and which shows the lowest?
From the data given below state which group is more variable, G1 or G2?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Group G1 | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group G2 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
If X and Y are two variates connected by the relation
In a series of 20 observations, 10 observations are each equal to k and each of the remaining half is equal to − k. If the standard deviation of the observations is 2, then write the value of k.
If v is the variance and σ is the standard deviation, then
The standard deviation of the data:
x: | 1 | a | a2 | .... | an |
f: | nC0 | nC1 | nC2 | .... | nCn |
is
If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is
If the S.D. of a set of observations is 8 and if each observation is divided by −2, the S.D. of the new set of observations will be
The standard deviation of first 10 natural numbers is
Let x1, x2, ..., xn be n observations. Let \[y_i = a x_i + b\] for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\] is 48 and their standard deviation is 12, the mean of \[y_i 's\] is 55 and standard deviation of \[y_i 's\] is 15, the values of a and b are
The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is
A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
Standard deviations for first 10 natural numbers is ______.
Coefficient of variation of two distributions are 50 and 60, and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is ______.
The standard deviation of a data is ______ of any change in orgin, but is ______ on the change of scale.