मराठी

If X and Y are two variates connected by the relation Y = a X + b c and Var (X) = σ2, then write the expression for the standard deviation of Y. - Mathematics

Advertisements
Advertisements

प्रश्न

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

उत्तर

\[Y = \frac{aX + b}{c}\]
\[Y = \frac{\sum y_i}{n} = \frac{\frac{a\sum X + nb}{c}}{n}\]
\[ = \frac{a\sum X}{nc} + \frac{nb}{nc}\]
\[ = \frac{a \bar{X}}{c} + \frac{b}{c}\]

We know:

\[Var\left( X \right) = \frac{\sum \left( x_i - \bar{X} \right)^2}{n}\]

\[ = \sigma^2 \]

\[Var\left( Y \right) = \frac{\sum \left( y_i - \bar{Y} \right)^2}{n}\]

\[ = \frac{\sum \left( \frac{aX}{c} + \frac{b}{c} - \frac{a}{c} \bar{X} - \frac{b}{c} \right)^2}{n}\]

\[ = \frac{\sum \left( \frac{aX}{c} - \frac{a}{c} \bar{X} \right)^2}{n}\]

\[ = \left( \frac{a}{c} \right)^2 \frac{\sum \left( x_i - \bar{X} \right)^2}{n}\]

\[ = \left( \frac{a}{c} \right)^2 \sigma^2 \]

\[SD \left( \sigma \right) = \sqrt{\left( \frac{a}{c} \right)^2 \sigma^2}\]

\[ = \left| \frac{a}{c} \right|\sigma\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Statistics - Exercise 32.8 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 32 Statistics
Exercise 32.8 | Q 4 | पृष्ठ ४९

संबंधित प्रश्‍न

Find the mean and variance for the first n natural numbers.


Find the mean and variance for the data.

xi 92 93 97 98 102 104 109
fi 3 2 3 2 6 3 3

The diameters of circles (in mm) drawn in a design are given below:

Diameters 33 - 36 37 - 40 41 - 44 45 - 48 49 - 52
No. of circles 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5 - 36.5, 36.5 - 40.5, 40.5 - 44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]


The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and variance of eight observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.


The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12 and 14. Find the remaining two observations.


The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

  1. If wrong item is omitted.
  2. If it is replaced by 12.

Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.


The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


The mean and standard deviation of 100 observations were calculated as 40 and 5.1 respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?


The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Find the standard deviation for the following data:

x : 3 8 13 18 23
f : 7 10 15 10 6

Calculate the mean and S.D. for the following data:

Expenditure in Rs: 0-10 10-20 20-30 30-40 40-50
Frequency: 14 13 27 21 15

A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and S.D.


Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

Coefficient of variation of two distributions are 60% and 70% and their standard deviations are 21 and 16 respectively. What are their arithmetic means?


The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

Find the coefficient of variation for the following data:

Size (in cms): 10-15 15-20 20-25 25-30 30-35 35-40
No. of items: 2 8 20 35 20 15

If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

If v is the variance and σ is the standard deviation, then

 


The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

The standard deviation of first 10 natural numbers is


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is 


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

The standard deviation of the observations 6, 5, 9, 13, 12, 8, 10 is


Life of bulbs produced by two factories A and B are given below:

Length of life
(in hours)
Factory A
(Number of bulbs)
Factory B
(Number of bulbs)
550 – 650 10 8
650 – 750 22 60
750 – 850 52 24
850 – 950 20 16
950 – 1050 16 12
  120 120

The bulbs of which factory are more consistent from the point of view of length of life?


The mean and standard deviation of a set of n1 observations are `barx_1` and s1, respectively while the mean and standard deviation of another set of n2 observations are `barx_2` and  s2, respectively. Show that the standard deviation of the combined set of (n1 + n2) observations is given by

S.D. = `sqrt((n_1(s_1)^2 + n_2(s_2)^2)/(n_1 + n_2) + (n_1n_2 (barx_1 - barx_2)^2)/(n_1 + n_2)^2)`


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


Let x1, x2, ..., xn be n observations and `barx` be their arithmetic mean. The formula for the standard deviation is given by ______.


Let a, b, c, d, e be the observations with mean m and standard deviation s. The standard deviation of the observations a + k, b + k, c + k, d + k, e + k is ______.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×