Advertisements
Advertisements
प्रश्न
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
उत्तर
Let \[x \text{ and } y\] be the other two observations.
Mean is 4.4.
\[\therefore \frac{1 + 2 + 6 + x + y}{5} = 4 . 4\]
\[\Rightarrow 9 + x + y = 22\]
\[ \Rightarrow x + y = 13 . . . (1)\]
Let Var (X) be the variance of these observations, which is given to be 8.24.
If \[\bar{x}\] is the mean, then we have:
\[8 . 24 = \frac{1}{5}\left( 1^2 + 2^2 + 6^2 + x^2 + y^2 \right) - \left( x \right)^2 \]
\[ = \frac{1}{5}\left( 1 + 4 + 36 + x^2 + y^2 \right) - \left( 4 . 4 \right)^2 \]
\[ = \frac{1}{5}\left( 41 + x^2 + y^2 \right) - 19 . 36\]
\[ \Rightarrow x^2 + y^2 = 97 . . . (2)\]
\[ \left( x + y \right)^2 + \left( x - y \right)^2 = 2\left( x^2 + y^2 \right) \]
\[ \Rightarrow {13}^2 + \left( x - y \right)^2 = 2 \times 97 \left[ \text{ using eq (1) and eq } (2) \right]\]
\[ \Rightarrow \left( x - y \right)^2 = 194 - 169 = 25\]
\[ \Rightarrow x - y = \pm 5 . . . . (3)\]
\[ \text{ Solving eq } (1)\text{ and eq (3) for x - y = - 5 and } x + y = 13\]
\[ 2x = 18 \]
\[ \Rightarrow x = 9\]
\[ \Rightarrow y = 4\]
Thus, the other two observations are 9 and 4.
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the median for the data.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Find the mean deviation about the mean for the data.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation about the median for the data.
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation from the mean for the data:
4, 7, 8, 9, 10, 12, 13, 17
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Calculate the mean deviation from the mean for the data:
38, 70, 48, 40, 42, 55, 63, 46, 54, 44a
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
Find the mean deviation from the mean for the data:
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation from the mean for the data:
Size | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Find the mean deviation from the mean for the data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Compute mean deviation from mean of the following distribution:
Mark | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
Find the mean deviation from the mean and from median of the following distribution:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
No. of students | 5 | 8 | 15 | 16 | 6 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval: | 0–4 | 4–8 | 8–12 | 12–16 | 16–20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
For a frequency distribution mean deviation from mean is computed by
The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the following data:
Size (x): | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency (f): | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
Find the mean and variance of the frequency distribution given below:
`x` | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
`f` | 6 | 4 | 5 | 1 |
Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.