मराठी

Find the mean deviation about the median of the following distribution: Marks obtained 10 11 12 14 15 No. of students 2 3 8 3 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4
तक्ता
बेरीज

उत्तर

Marks
obtained
`f_i` `c.f.` `d_i = |x_i - Med|` `f_i d_i`
10 2 2 2 4
11 3 5 1 3
12 8 13 0 0
14 3 16 2 6
15 4 20 3 12
Total 20     25

Here `sumf_i` = N = 20 and `sumf_i d_i` = 25

Median = `1/2[(N/2)^"th"  "observation" + (N/2 + 1)^"th"  "observation"]`

= `1/2[(20/2)^"th" "observation" + (20/2 + 1)^"th"  "observation"]`

= `1/2[10^"th"  "observation" + 11^"th"  "observation"]`

= `1/2[12 + 12]`

∴ Median = 12

∴ M.D. = `(sumf_i d_i)/(sum f_i)`

= `25/50`

= 1.25

Hence, the required M.D. = 1.25

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Exercise [पृष्ठ २७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 15 Statistics
Exercise | Q 2 | पृष्ठ २७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 15 21 27 30 35
fi 3 5 6 7 8

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

3011, 2780, 3020, 2354, 3541, 4150, 5000


Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 63, 42, 55, 44, 53, 47

 

Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the mean for the data:

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation from the mean for the data:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 


Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Calculate mean deviation from the median of the following data: 

Class interval: 0–6 6–12 12–18 18–24 24–30
Frequency 4 5 3 6 2

The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

The mean deviation from the median is


A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.


Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×