Advertisements
Advertisements
प्रश्न
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
उत्तर
Size(xi) | Frequency (fi) | fixi | \[\left| x_i - \bar{x} \right|\] \[ = \left| x_i - 21 . 65 \right|\] |
\[f_i \left| x_i - x \right|\]
\[ = f_i \left| x_i - 21 . 65 \right|\] |
20 | 6 | 120 | 1.65 | 9.9 |
21 | 4 | 84 | 0.65 | 2.6 |
22 | 5 | 110 | 0.35 | 1.75 |
23 | 1 | 23 | 1.35 | 1.35 |
24 | 4 | 96 | 2.35 | 9.4 |
\[N = 20\]
|
\[\sum^n_{i = 1} f_i x_i = 433\]
|
\[\sum^n_{i = 1} f_i \left| x_i - x \right| = 25\]
|
\[\bar{x} = \frac{\sum^{n}_{i = 1} f_ix_i}{N} = \frac{433}{20} = 21 . 65\]
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the mean for the data.
4, 7, 8, 9, 10, 12, 13, 17
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Find the mean deviation about the mean for the data.
Height in cms | Number of boys |
95 - 105 | 9 |
105 - 115 | 13 |
115 - 125 | 26 |
125 - 135 | 30 |
135 - 145 | 12 |
145 - 155 | 10 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
34, 66, 30, 38, 44, 50, 40, 60, 42, 51
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
Calculate the mean deviation from the mean for the data:
4, 7, 8, 9, 10, 12, 13, 17
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
In 22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
Size | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Find the mean deviation from the median for the data:
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Compute the mean deviation from the median of the following distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 5 | 10 | 20 | 5 | 10 |
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Find the mean deviation from the mean for the data:
Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequencies | 6 | 8 | 14 | 16 | 4 | 2 |
Calculate mean deviation about median age for the age distribution of 100 persons given below:
Age: | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number of persons | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
The mean deviation of the series a, a + d, a + 2d, ..., a + 2n from its mean is
A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is
The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\] from their mean \[\bar{X} \] is given by
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the following data:
Size (x): | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency (f): | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
Find the mean and variance of the frequency distribution given below:
`x` | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
`f` | 6 | 4 | 5 | 1 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval | 0 – 4 | 4 – 8 | 8 – 12 | 12 – 16 | 16 – 20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.
Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.