Advertisements
Advertisements
प्रश्न
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
उत्तर
Formula used for mean deviation:
\[MD = \frac{1}{n} \sum^n_{i = 1} \left| d_i \right|\]
\[Here, \]
\[ d_i = x_i - M\]
M = Median
iv) Arranging the data in ascending order.
22, 24, 25, 27, 28, 29, 30, 31, 41, 42
\[\text{ Here } , n = 10 .\]
Also, median is the AM of the fifth and the sixth observation.
\[Median, M = \frac{28 + 29}{2} = 28 . 5\]
xi |
\[\left| d_i \right| = \left| x_i - M \right|\]
|
22 | 6.5 |
24 | 4.5 |
30 | 1.5 |
27 | 1.5 |
29 | 0.5 |
31 | 2.5 |
25 | 3.5 |
28 | 0.5 |
41 | 12.5 |
41 | 13.5 |
Total | 47 |
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the mean for the data.
4, 7, 8, 9, 10, 12, 13, 17
Find the mean deviation about the median for the data.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Find the mean deviation about the median for the data.
36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Find the mean deviation about the mean for the data.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 42, 55, 63, 46, 54, 44
Calculate the mean deviation from the mean for the data:
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Calculate the mean deviation from the mean for the data:
38, 70, 48, 40, 42, 55, 63, 46, 54, 44a
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
In 22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation from the mean for the data:
Size | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Find the mean deviation from the mean for the data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Find the mean deviation from the mean for the data:
Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequencies | 6 | 8 | 14 | 16 | 4 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
The mean deviation of the series a, a + d, a + 2d, ..., a + 2n from its mean is
A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is
The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\] from their mean \[\bar{X} \] is given by
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the distribution:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval | 0 – 4 | 4 – 8 | 8 – 12 | 12 – 16 | 16 – 20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
Calculate the mean deviation from the median of the following data:
Class interval | 0 – 6 | 6 – 12 | 12 – 18 | 18 – 24 | 24 – 30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.
When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
The mean deviations (in hours) from their mean is ______.
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.
If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |