Advertisements
Advertisements
प्रश्न
Calculate mean deviation about median age for the age distribution of 100 persons given below:
Age: | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number of persons | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
उत्तर
Since the function is not continuous, we subtract 0.5 from the lower limit of the class and add 0.5 to the upper limit of the class so that the class interval remains same, while the function becomes continuous.
Thus, the mean distribution table will be as follows:
Age | Number of Persons \[f_i\]
|
Midpoint \[x_i\]
|
Cumulative Frequency | \[\left| d_i \right| = \left| x_i - 38 \right|\] |
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>i</mi></msub><msub><mi>d</mi><mi>i</mi></msub></math>
LaTeX
\[f_i d_i\]
|
15.5−20.5 | 5 | 18 | 5 | 20 | 100 |
20.5−25.5 | 6 | 23 | 11 | 15 | 90 |
25.5−30.5 | 12 | 28 | 23 | 10 | 120 |
30.5−35.5 | 14 | 33 | 37 | 5 | 70 |
35.5−40.5 | 26 | 38 | 63 | 0 | 0 |
40.5−45.5 | 12 | 43 | 75 | 5 | 60 |
45.5−50.5 | 16 | 48 | 91 | 10 | 160 |
50.5−55.5 | 9 | 53 | 100 | 15 | 135 |
\[N = \sum^8_{i = 1} f_i = 100\]
|
\[\sum^8_{i = 1} f_i d_i = 735\] |
\[N = 100 \]
\[ \Rightarrow \frac{N}{2} = 50\]
Thus, the cumulative frequency slightly greater than 50 is 63 and falls in the median class 35.5−40.5.
\[\text{ Median } = l +{\frac{\frac{N}{2} - F}{f}} \times h \]
\[ = 35 . 5 + {\frac{\left( 50 - 37 \right)}{26}} \times 5\]
\[ = 35 . 5 + 2 . 5 \]
\[ = 38 \]
\[\text{ Mean deviation about the median age } = {\frac{\sum^8_{i = 1} f_i \left| d_i \right|}{N}}\]
\[ =^{\frac{735}{100}}\]
\[ = 7 . 35\]
Thus, the mean deviation from the median age is 7.35 years.
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the median for the data.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Find the mean deviation about the mean for the data.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
Calculate the mean deviation from the mean for the data:
4, 7, 8, 9, 10, 12, 13, 17
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
In 22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation from the median for the data:
xi | 74 | 89 | 42 | 54 | 91 | 94 | 35 |
fi | 20 | 12 | 2 | 4 | 5 | 3 | 4 |
Compute the mean deviation from the median of the following distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 5 | 10 | 20 | 5 | 10 |
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
Find the mean deviation from the mean and from median of the following distribution:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
No. of students | 5 | 8 | 15 | 16 | 6 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
For a frequency distribution mean deviation from mean is computed by
The mean deviation of the series a, a + d, a + 2d, ..., a + 2n from its mean is
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is
The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\] from their mean \[\bar{X} \] is given by
Find the mean deviation about the mean of the following data:
Size (x): | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency (f): | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval | 0 – 4 | 4 – 8 | 8 – 12 | 12 – 16 | 16 – 20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.
Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.
The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.