मराठी

For a Group of 200 Candidates, the Mean and Standard Deviations of Scores Were Found to Be 40 and 15 Respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

For a group of 200 candidates, the mean and standard deviations of scores were found to be 40 and 15 respectively. Later on it was discovered that the scores of 43 and 35 were misread as 34 and 53 respectively. Find the correct mean and standard deviation.

 

उत्तर

We have:

\[n = 200, \bar{X} = 40, \sigma = 15\]

\[\frac{1}{n}\sum x_i = \bar{X}\]

\[ \therefore \frac{1}{200} \sum_{} x_i = 40\]

\[ \Rightarrow \sum_{} x_i = 40 \times 200 = 8000 \]

\[\text{ Since the score was misread, this sum is incorrect . } \]

\[ \Rightarrow \text{ Corrected } \sum^{}_{} x_i = 8000 - 34 - 53 + 43 + 35\]

\[ = 8000 - 7 \]

\[ = 7993\]

\[ \therefore \text{ Corrected mean } = \frac{\text{ Corrected } \sum^{}_{} x_i}{200} \]

\[ = \frac{7993}{200}\]

\[ = 39 . 955 \]

\[SD = \sigma = 15 \]

\[ \Rightarrow \text{ Variance } = {15}^2 = 225\]

\[\ \text{ According to the formula, } \]

\[ \text{ Variance } = \left( \frac{1}{n} \sum_{} {x_i}^2 \right) - \left( \frac{1}{n} \sum_{} x_i \right)^2 \]

\[ \therefore \frac{1}{200} \sum_{} {x_i}^2 - \left( 40 \right)^2 = 225\]

\[ \Rightarrow \frac{1}{200} \sum_{} \left( x_i \right)^2 - 1600 = 225\]

\[ \Rightarrow \sum_{} \left( x_i \right)^2 = 200 \times 1825 = 365000 \]

\[\text{ This is an incorrect reading . } \]

\[ \therefore \text{ Corrected }  \sum_{} \left( x_i \right)^2 = 365000 - {34}^2 - {53}^2 + {43}^2 + {35}^2 \]

\[ = 365000 - 1156 - 2809 + 1849 + 1225\]

\[ = 364109\]

\[\text{ Corrected variance }  = \left({\frac{1}{n} \times \text{ Corrected } \sum_{} x_i} \right) - \left( {\text{ Corrected mean} } \right)^2 \]

\[ = \left({\frac{1}{200} \times 364109} \right) - \left( {39 . 955} \right)^2 \]

\[ = 1820 . 545 - 1596 . 402\]

\[ = 224 . 14\]

\[ \text{ Corrected SD }  = \sqrt{\text{ {Corrected variance}}} \]

\[ = \sqrt{{224 . 14}}\]

\[ = 14 . 97 \]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Statistics - Exercise 32.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 32 Statistics
Exercise 32.4 | Q 7 | पृष्ठ २८

संबंधित प्रश्‍न

Find the mean and variance for the first n natural numbers.


Find the mean and variance for the first 10 multiples of 3.


The sum and sum of squares corresponding to length (in cm) and weight (in gm) of 50 plant products are given below:

`sum_(i-1)^50 x_i = 212, sum_(i=1)^50 x_i^2 = 902.8, sum_(i=1)^50 y_i = 261, sum_(i = 1)^50 y_i^2 = 1457.6`

Which is more varying, the length or weight?

 

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations


The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.


Find the mean, variance and standard deviation for the data:

 2, 4, 5, 6, 8, 17.


Find the mean, variance and standard deviation for the data:

6, 7, 10, 12, 13, 4, 8, 12.


Find the mean, variance and standard deviation for the data:

 227, 235, 255, 269, 292, 299, 312, 321, 333, 348.


Find the mean, variance and standard deviation for the data 15, 22, 27, 11, 9, 21, 14, 9.

 

The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.

 

The mean and standard deviation of 6 observations are 8 and 4 respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


The mean and standard deviation of 20 observations are found to be 10 and 2 respectively. On rechecking it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted
(ii) if it is replaced by 12.


The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations were omitted.


Find the standard deviation for the following distribution:

x : 4.5 14.5 24.5 34.5 44.5 54.5 64.5
f : 1 5 12 22 17 9 4

Calculate the A.M. and S.D. for the following distribution:

Class: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Frequency: 18 16 15 12 10 5 2 1

Calculate the mean, median and standard deviation of the following distribution:

Class-interval: 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70
Frequency: 2 3 8 12 16 5 2 3

The means and standard deviations of heights ans weights of 50 students of a class are as follows: 

  Weights Heights
Mean 63.2 kg 63.2 inch
Standard deviation 5.6 kg 11.5 inch

Which shows more variability, heights or weights?

 

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, mathematics, physics and chemistry are given below: 

Subject Mathematics Physics Chemistry
Mean 42 32 40.9
Standard Deviation 12 15 20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

 

From the data given below state which group is more variable, G1 or G2?

Marks 10-20 20-30 30-40 40-50 50-60 60-70 70-80
Group G1 9 17 32 33 40 10 9
Group G2 10 20 30 25 43 15 7

If X and Y are two variates connected by the relation

\[Y = \frac{aX + b}{c}\]  and Var (X) = σ2, then write the expression for the standard deviation of Y.
 
 

If each observation of a raw data whose standard deviation is σ is multiplied by a, then write the S.D. of the new set of observations.

 

If v is the variance and σ is the standard deviation, then

 


The standard deviation of the data:

x: 1 a a2 .... an
f: nC0 nC1 nC2 .... nCn

is


If the standard deviation of a variable X is σ, then the standard deviation of variable \[\frac{a X + b}{c}\] is

 

The standard deviation of first 10 natural numbers is


Let x1x2, ..., xn be n observations. Let  \[y_i = a x_i + b\]  for i = 1, 2, 3, ..., n, where a and b are constants. If the mean of \[x_i 's\]  is 48 and their standard deviation is 12, the mean of \[y_i 's\]  is 55 and standard deviation of \[y_i 's\]  is 15, the values of a and are 

 
 
 
   

A set of n values x1, x2, ..., xn has standard deviation 6. The standard deviation of n values x1 + k, x2 + k, ..., xn + k will be ______.


The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.


The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is ______.


Standard deviations for first 10 natural numbers is ______.


If the variance of a data is 121, then the standard deviation of the data is ______.


The standard deviation is ______to the mean deviation taken from the arithmetic mean.


The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×