Advertisements
Advertisements
Question
Calculate the mean deviation from the mean for the data:
4, 7, 8, 9, 10, 12, 13, 17
Solution
Formula used for finding the mean deviation about the mean is given below:
\[MD = \frac{1}{n} \sum^n_{i = 1} \left| d_i \right| , \text{ where } \left| d_i \right| = \left| x_i - x \right|\]
Let
\[x\] be the mean of the given data.
\[x = \frac{4 + 7 + 8 + 9 + 10 + 12 + 13 + 17}{8} = 10\]
|
|
4 | 6 |
7 | 3 |
8 | 2 |
9 | 1 |
10 | 0 |
12 | 2 |
13 | 3 |
17 | 7 |
Total | 24 |
\[MD = \frac{1}{n} \sum^n_{i = 1} \left| d_i \right|\]
\[MD = \frac{1}{8} \times 24 = 3\]
APPEARS IN
RELATED QUESTIONS
Find the mean deviation about the mean for the data.
38, 70, 48, 40, 42, 55, 63, 46, 54, 44
Find the mean deviation about the median for the data.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Find the mean deviation about the median for the data.
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation about the mean for the data.
Income per day in ₹ | Number of persons |
0-100 | 4 |
100-200 | 8 |
200-300 | 9 |
300-400 | 10 |
400-500 | 7 |
500-600 | 5 |
600-700 | 4 |
700-800 | 3 |
Find the mean deviation about median for the following data:
Marks | Number of girls |
0-10 | 6 |
10-20 | 8 |
20-30 | 14 |
30-40 | 16 |
40-50 | 4 |
50-60 | 2 |
Calculate the mean deviation about the median of the observation:
34, 66, 30, 38, 44, 50, 40, 60, 42, 51
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
Calculate the mean deviation from the mean for the data:
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Calculate the mean deviation from the mean for the data:
38, 70, 48, 40, 42, 55, 63, 46, 54, 44a
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between
\[\bar{ X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation from the mean for the data:
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation from the mean for the data:
Size | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Compute the mean deviation from the median of the following distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 5 | 10 | 20 | 5 | 10 |
Find the mean deviation from the mean for the data:
Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequencies | 6 | 8 | 14 | 16 | 4 | 2 |
Compute mean deviation from mean of the following distribution:
Mark | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
The age distribution of 100 life-insurance policy holders is as follows:
Age (on nearest birth day) | 17-19.5 | 20-25.5 | 26-35.5 | 36-40.5 | 41-50.5 | 51-55.5 | 56-60.5 | 61-70.5 |
No. of persons | 5 | 16 | 12 | 26 | 14 | 12 | 6 | 5 |
Calculate the mean deviation from the median age
Calculate mean deviation from the median of the following data:
Class interval: | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
The mean deviation from the median is
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the distribution:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Find the mean and variance of the frequency distribution given below:
`x` | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
`f` | 6 | 4 | 5 | 1 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval | 0 – 4 | 4 – 8 | 8 – 12 | 12 – 16 | 16 – 20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.
If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |