English

Compute Mean Deviation from Mean of the Following Distribution: Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 No. of Students 8 10 15 25 20 18 9 5 - Mathematics

Advertisements
Advertisements

Question

Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Solution

Computation of mean deviation from the mean:

Marks  Number of Students
\[f_i\]
Midpoints
\[x_i\]
 

\[f_i x_i\]
 

\[\left| x_i - X \right|\]
=
\[\left| x_i - 49 \right|\]
 

\[f_i \left| x_i - X \right|\]
10−20 8 15 120 34 272
20−30 10 25 250 24 240
30−40 15 35 525 14 210
40−50 25 45 1125 4 100
50−60 20 55 1100 6 120
60−70 18 65 1170 16 288
70−80 9 75 675 26 234
80−90 5 85 425 36 180
 
\[N = \sum^8_{i = 1} f_i = 110\]
 
 

\[\sum^8_{i = 1} f_i x_i = 5390\]
 
 

\[\sum^8_{i = 1} f_i \left| x_i - X \right| = 1644\]
\[N = \sum^8_{i = 1} f_i = 110\]
and

\[\sum^8_{i = 1} f_i x_i = 5390\]

\[X = \frac{\sum^8_{i = 1} f_i x_i}{N}\]
\[ = \frac{5390}{110}\]
\[ = 49\]

\[\text{ Mean deviation } = \frac{\sum^8_{i = 1} f_i \left| x_i - X \right|}{N}\]

\[ = \frac{1644}{110}\]

\[ = 14 . 945\]

\[ \approx 14 . 95\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 32: Statistics - Exercise 32.3 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 32 Statistics
Exercise 32.3 | Q 3 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Calculate the mean deviation about the median of the observation:

 34, 66, 30, 38, 44, 50, 40, 60, 42, 51


Calculate the mean deviation from the mean for the  data:

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

 

Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median


In  22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between 

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 


Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

For a frequency distribution mean deviation from mean is computed by


A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is


The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation about the mean for the following frequency distribution:

Class interval 0 – 4 4 – 8 8 – 12 12 – 16 16 – 20
Frequency 4 6 8 5 2

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×