English

Calculate the mean deviation from the median of the following data: Class interval 0 - 6 6 - 12 12 - 18 18 - 24 24 - 30 Frequency 4 5 3 6 2 - Mathematics

Advertisements
Advertisements

Question

Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2
Chart
Sum

Solution

Class-interval `f_i` `x_i` `c.f.` `d_i = |x_i - Med|` `f_i d_i`
0 – 6 4 3 4 11 44
6 – 12 5 9 9 5 25
12 – 18 3 15 12 1 3
18 – 24 6 21 18 7 42
24 – 30 2 27 20 13 26
  N = 20       `sumf_i d_i` = 140

Median class = `(N/2)^"th"` term

= `(20/2)^"th"` term

= 10th term

i.e. 12 – 18

∴ Median = `l + (N/2 - c.f.)/f xx h`

= `12 + (10 - 9)/3 xx 6`

= `12 + 1/3 xx 6`

= 12 + 2

= 14

and M.D. = `(sumf_i d_i)/N`

= `140/20`

= 7

Hence, the required M.D. = 7

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Statistics - Exercise [Page 280]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 15 Statistics
Exercise | Q 17 | Page 280

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Calculate the mean deviation about the median of the observation:

3011, 2780, 3020, 2354, 3541, 4150, 5000


Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

In  22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between 

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Compute the mean deviation from the median of the following distribution:

Class 0-10 10-20 20-30 30-40 40-50
Frequency 5 10 20 5 10

Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

The age distribution of 100 life-insurance policy holders is as follows:

Age (on nearest birth day) 17-19.5 20-25.5 26-35.5 36-40.5 41-50.5 51-55.5 56-60.5 61-70.5
No. of persons 5 16 12 26 14 12 6 5

Calculate the mean deviation from the median age


Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

Calculate mean deviation from the median of the following data: 

Class interval: 0–6 6–12 12–18 18–24 24–30
Frequency 4 5 3 6 2

The mean deviation from the median is


A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


The mean deviation for n observations \[x_1 , x_2 , . . . , x_n\]  from their mean \[\bar{X} \]  is given by

 
  

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×