Advertisements
Advertisements
Question
When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
The mean deviations (in hours) from their mean is ______.
Options
178
179
220
356
Solution
The mean deviations (in hours) from their mean is 178.
Explanation:
The lines of 5 bulbs are given by 1357, 1090, 1666, 1494, 1623
∴ Mean = `(1357 + 1090 + 1666 + 1494 + 1623)/5`
⇒ `barx = 7230/5` = 1446
`x_i` | `d_i = |x_i - barx|` |
1357 | 89 |
1090 | 256 |
1666 | 220 |
1494 | 48 |
1623 | 177 |
Total | `sumd_i` = 890 |
∴ M.. = `(sumd_i)/n`
= `890/5`
= 178
APPEARS IN
RELATED QUESTIONS
Find the mean deviation about the mean for the data.
38, 70, 48, 40, 42, 55, 63, 46, 54, 44
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about median for the following data:
Marks | Number of girls |
0-10 | 6 |
10-20 | 8 |
20-30 | 14 |
30-40 | 16 |
40-50 | 4 |
50-60 | 2 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 42, 55, 63, 46, 54, 44
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
Find the mean deviation from the mean for the data:
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation from the mean for the data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Find the mean deviation from the mean for the data:
Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequencies | 6 | 8 | 14 | 16 | 4 | 2 |
The age distribution of 100 life-insurance policy holders is as follows:
Age (on nearest birth day) | 17-19.5 | 20-25.5 | 26-35.5 | 36-40.5 | 41-50.5 | 51-55.5 | 56-60.5 | 61-70.5 |
No. of persons | 5 | 16 | 12 | 26 | 14 | 12 | 6 | 5 |
Calculate the mean deviation from the median age
Calculate mean deviation about median age for the age distribution of 100 persons given below:
Age: | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number of persons | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval: | 0–4 | 4–8 | 8–12 | 12–16 | 16–20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
Calculate mean deviation from the median of the following data:
Class interval: | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval | 0 – 4 | 4 – 8 | 8 – 12 | 12 – 16 | 16 – 20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.