Advertisements
Advertisements
प्रश्न
The mean deviation of the series a, a + d, a + 2d, ..., a + 2n from its mean is
विकल्प
\[\frac{(n + 1) d}{2n + 1}\]
\[\frac{nd}{2n + 1}\]
\[\frac{n (n + 1) d}{2n + 1}\]
\[\frac{(2n + 1) d}{n (n + 1)}\]
उत्तर
\[\frac{n (n + 1) d}{2n + 1}\]
\[x_i\]
|
\[\left| x_i - X \right| = \left| x_i - \left( a + nd \right) \right|\]
|
---|---|
a | nd |
a + d | (n-1)d |
a + 2d | (n-2)d |
a + 3d | (n-3)d |
: | : |
: | : |
a + (n - 1)d | d |
a + nd | 0 |
a + (n+1)d | d |
: | : |
: | : |
a + 2nd | nd |
\[\sum_{} x_i = \left( 2n + 1 \right)\left( a + nd \right)\]
|
\[\sum_{} \left| x_i - X \right| = n\left( n + 1 \right)d\]
|
\[\text{ There are 2n + 1 terms } . \]
\[ \Rightarrow N = 2n + 1\]
\[ \sum_{} x_i = a + a + d + a + 2d + a + 3d + . . . + a + 2nd\]
\[ = (2n + 1)a + d (1 + 2 + 3 + . . . + 2n) \left[ a + a + a + . . . (2n + 1) \text{ times } = \left( 2n + 1 \right) a \right]\]
\[ = (2n + 1)a + \frac{2n\left( 2n + 1 \right)d}{2} \left[ \text{ Sum of the first n natural numbers is } \frac{n (n + 1)}{2}, \text{ but here we are considering the first 2n numbers } . \right]\]
\[ = \left( 2n + 1 \right)a + \left( 2n + 1 \right)nd \]
\[ = \left( 2n + 1 \right)\left( a + nd \right)\]
\[X = \frac{\left( 2n + 1 \right)\left( a + nd \right)}{\left( 2n + 1 \right)}\]
\[ = a + nd\]
\[ \sum_{} \left| x_i - X \right| = nd + (n - 1)d + (n - 2)d + . . . + d + 0 + d + 2 d + 3d + . . . + nd\]
\[ = d\left( n + \left( n - 1 \right) + \left( n - 2 \right) + . . . + 1 \right) + 0 + d\left( 1 + 2 + 3 + . . . + n \right)\]
\[ = \frac{dn\left( n + 1 \right)}{2} + \frac{dn\left( n + 1 \right)}{2} \left\{ \because 1 + 2 + 3 + . . . + n = \frac{n\left( n + 1 \right)}{2} \right\}\]
\[ = n(n + 1)d\]
\[\text{ Mean deviation about the mean } = \frac{\sum_{} \left| x_i - X \right|}{N}\]
\[ = \frac{n(n + 1)d}{\left( 2n + 1 \right)}\]
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the median for the data.
36, 72, 46, 42, 60, 45, 53, 46, 51, 49
Find the mean deviation about the mean for the data.
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation about the mean for the data.
Height in cms | Number of boys |
95 - 105 | 9 |
105 - 115 | 13 |
115 - 125 | 26 |
125 - 135 | 30 |
135 - 145 | 12 |
145 - 155 | 10 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
34, 66, 30, 38, 44, 50, 40, 60, 42, 51
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation from the mean for the data:
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation from the mean for the data:
Size | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
Find the mean deviation from the median for the data:
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Find the mean deviation from the median for the data:
xi | 74 | 89 | 42 | 54 | 91 | 94 | 35 |
fi | 20 | 12 | 2 | 4 | 5 | 3 | 4 |
Find the mean deviation from the mean for the data:
Classes | 95-105 | 105-115 | 115-125 | 125-135 | 135-145 | 145-155 |
Frequencies | 9 | 13 | 16 | 26 | 30 | 12 |
Compute mean deviation from mean of the following distribution:
Mark | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
No. of students | 8 | 10 | 15 | 25 | 20 | 18 | 9 | 5 |
The age distribution of 100 life-insurance policy holders is as follows:
Age (on nearest birth day) | 17-19.5 | 20-25.5 | 26-35.5 | 36-40.5 | 41-50.5 | 51-55.5 | 56-60.5 | 61-70.5 |
No. of persons | 5 | 16 | 12 | 26 | 14 | 12 | 6 | 5 |
Calculate the mean deviation from the median age
Calculate the mean deviation about the mean for the following frequency distribution:
Class interval: | 0–4 | 4–8 | 8–12 | 12–16 | 16–20 |
Frequency | 4 | 6 | 8 | 5 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
The mean deviation from the median is
A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the following data:
Size (x): | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency (f): | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
Find the mean and variance of the frequency distribution given below:
`x` | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
`f` | 6 | 4 | 5 | 1 |
Calculate the mean deviation from the median of the following data:
Class interval | 0 – 6 | 6 – 12 | 12 – 18 | 18 – 24 | 24 – 30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.
When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
The mean deviations (in hours) from their mean is ______.
If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`
Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.
The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |