हिंदी

Calculate the Mean Deviation About the Mean for the Following Frequency Distribution: Class Interval: 0–4 4–8 8–12 12–16 16–20 Frequency 4 6 8 5 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

उत्तर

Let the assumed mean A = 10 and h = 4. 

Class Interval Mid-Value(xi) Frequency(fi)
 

\[d_i = \frac{x_i - 10}{4}\]
 

\[f_i d_i\]

\[\left| x_i - X \right|\]
\[ = \left| x_i - 9 . 2 \right|\]
 

\[f_i \left| x_i - X \right|\]
0–4 2 4 −2 −8 7.2 28.8
4–8 6 6 −1 −6 3.2 19.2
8–12 10 8 0 0 0.8 6.4
12–16 14 5 1 5 4.8 24
16–20 18 2 2 4 8.8 17.6
    N = 25  
 

\[\sum f_i d_i\]=-5
 
 

\[\sum f_i |x_i-\bar{x}|=96\]

Here, = 25 and

\[\sum f_i d_i\]=-5
Mean,
 
\[X = A + h\left( \frac{1}{N} \sum_{} f_i d_i \right)\]
\[ = 10 + 4\left( \frac{1}{25} \times \left( - 5 \right) \right)\]
\[ = 10 - \frac{20}{25}\]
\[ = 10 - 0 . 8\]
\[ = 9 . 2\]
∴ Mean deviation about mean
\[= \frac{1}{N}\sum_{} f_i \left| x_i - X \right| = \frac{1}{25} \times 96 = 3 . 84\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.3 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.3 | Q 7 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the median for the data.

36, 72, 46, 42, 60, 45, 53, 46, 51, 49


Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation about the median of the observation:

 22, 24, 30, 27, 29, 31, 25, 28, 41, 42


Calculate the mean deviation from the mean for the  data:

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

 

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median


The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the mean for the data:

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

The age distribution of 100 life-insurance policy holders is as follows:

Age (on nearest birth day) 17-19.5 20-25.5 26-35.5 36-40.5 41-50.5 51-55.5 56-60.5 61-70.5
No. of persons 5 16 12 26 14 12 6 5

Calculate the mean deviation from the median age


The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.

 

For a frequency distribution mean deviation from mean is computed by


The mean deviation of the series aa + da + 2d, ..., a + 2n from its mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.


Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×