हिंदी

Find the Mean Deviation from the Mean for the Data:Classes0-1010-2020-3030-4040-5050-60frequencies68141642 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

उत्तर

 We will compute the mean deviation from the mean in the following way: 

Classes  Frequency 
 

\[f_i\]
Midpoints
 

\[x_i\]
 

\[f_i x_i\]
 

\[\left| x_i - X \right|\]
=
 

\[\left| x_i - 358 \right|\]

 

\[f_i \left| x_i - X \right|\]
0−10 6 5 30 22 132
10−20 8 15 120 12 96
20−30 14 25 350 2 28
30−40 16 35 560 8 128
40−50 4 45 180 18 72
50−60 2 55 110 28 56
 
\[\sum^6_{i = 1} f_i = 50\]

 
 
 

\[\sum^6_{i = 1} f_i = 50\]

 
  \[\sum^8_{i = 1} f_i \left| x_i - X \right| = 512\]

 

 

\[N = \sum^6_{i = 1} f_i = 50\]  and

\[\sum^6_{i = 1} f_i x_i = 1350\]

\[X = \frac{\sum^6_{i = 1} f_i x_i}{\sum^6_{i = 1} f_i}\]

\[ = \frac{1350}{50}\]

\[ = 27\]

\[\therefore \text{ Mean deviation } = \frac{1}{N} \sum^8_{i = 1} f_i \left| x_i - X \right|\]

\[ = \frac{512}{50}\]

\[ = 10 . 24\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.3 | Q 2.3 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the median for the data.

36, 72, 46, 42, 60, 45, 53, 46, 51, 49


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about the median of the observation:

 34, 66, 30, 38, 44, 50, 40, 60, 42, 51


Calculate the mean deviation about the median of the observation:

 22, 24, 30, 27, 29, 31, 25, 28, 41, 42


Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
 Find mean deviation from median


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation from the median for the  data:

xi 15 21 27 30 35
fi 3 5 6 7 8

 


Find the mean deviation from the mean for the data:

Classes 95-105 105-115 115-125 125-135 135-145 145-155
Frequencies 9 13 16 26 30 12

 


For a frequency distribution mean deviation from mean is computed by


The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is


The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.


Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.


The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×