हिंदी

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number. - Mathematics

Advertisements
Advertisements

प्रश्न

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.

योग

उत्तर

First n natural numbers are 1, 2, 3, ..., n.

Here, n is odd.

∴ Mean `barx = (1 + 2 + 3 + ... + n)/n`

= `((n(n + 1))/2)/n`

= `(n + 1)/2`

The deviations of numbers from mean `((n + 1)/2)` are

`1 - (n + 1)/2, 2 - (n + 1)/2, 3 - (n + 1)/2, ..., n - (n + 1)/2`

i.e., `- (n - 1)/2, (n - 3)/2,..., -2, -1, 0, 1, 2, ..., (n - 1)/2`.

The absolute values of deviation from the mean i.e. `|x_i - barx|` are

`(n - 1)/2, (n - 3)/2, ..., 2, 1, 0, 1, 2, ..., (n - 1)/2`.

The sum of absolute values of deviations from the mean i.e. `|x_i - barx|`

= `2(1 + 2 + 3 + ..."to" (n - 1)/2 "terms")`

= `2 * ((n - 1)/2 ((n - 1)/2 + 1))/2`

= `(n - 1)/2 * (n + 1)/2`

= `(n^2 - 1)/4`.

∴ Mean deviation about the mean

= `(sum|x_i - barx|)/n`

= `((n^2 - 1)/4)/n`

= `(n^2 - 1)/(4n)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Statistics - Exercise [पृष्ठ २७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 15 Statistics
Exercise | Q 3 | पृष्ठ २७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Find the mean deviation from the mean for the data:

Classes 0-10 10-20 20-30 30-40 40-50 50-60
Frequencies 6 8 14 16 4 2

Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

The mean deviation from the median is


A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


Find the mean deviation about the mean of the following data:

Size (x): 1 3 5 7 9 11 13 15
Frequency (f): 3 3 4 14 7 4 3 4

The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.


Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.


Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Find the mean and variance of the frequency distribution given below:

`x` 1 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 7 7 ≤ x < 10
`f` 6 4 5 1

Calculate the mean deviation about the mean for the following frequency distribution:

Class interval 0 – 4 4 – 8 8 – 12 12 – 16 16 – 20
Frequency 4 6 8 5 2

When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 
The mean deviations (in hours) from their mean is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×