Advertisements
Advertisements
प्रश्न
Find the mean deviation about the mean for the data.
38, 70, 48, 40, 42, 55, 63, 46, 54, 44
उत्तर
Arithmetic mean `overline x = (38 + 70 + 48 + 40 + 42 + 55 + 63 + 46 + 54 + 44)/10 = 500/10 = 50`
`sum |x_i - overline x| = |38 - 50| + |70 - 50| + |48 - 50| + |40 - 50| + |42 - 50| + |55 - 50| + |63 - 50| + |46 - 50| + |54 - 50| + |44 - 50|`
= 12 + 20 + 2 + 10 + 8 + 5 + 13 + 4 + 4 + 4 + 6
= 84
∴ MD `(overline x) = (sum |x_i - overline x|)/n`
= `84/10`
= 8.4
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Find the mean deviation about the median for the data.
xi | 15 | 21 | 27 | 30 | 35 |
fi | 3 | 5 | 6 | 7 | 8 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
3011, 2780, 3020, 2354, 3541, 4150, 5000
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 42, 55, 63, 46, 54, 44
Calculate the mean deviation about the median of the observation:
34, 66, 30, 38, 44, 50, 40, 60, 42, 51
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 63, 42, 55, 44, 53, 47
Calculate the mean deviation from the mean for the data:
(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49
In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between
\[\bar{ X } \] + M.D, where M.D. is the mean deviation from the mean.
In 22, 24, 30, 27, 29, 31, 25, 28, 41, 42 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 10 | 30 | 50 | 70 | 90 |
fi | 4 | 24 | 28 | 16 | 8 |
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation from the median for the data:
xi | 74 | 89 | 42 | 54 | 91 | 94 | 35 |
fi | 20 | 12 | 2 | 4 | 5 | 3 | 4 |
Compute the mean deviation from the median of the following distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 5 | 10 | 20 | 5 | 10 |
Calculate mean deviation from the median of the following data:
Class interval: | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
The mean of 5 observations is 4.4 and their variance is 8.24. If three of the observations are 1, 2 and 6, find the other two observations.
The mean deviation from the median is
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is
Find the mean deviation about the mean of the following data:
Size (x): | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency (f): | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.
Find the mean deviation about the mean of the distribution:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is ______.
When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
The mean deviations (in hours) from their mean is ______.
The sum of squares of the deviations of the values of the variable is ______ when taken about their arithmetic mean.
Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |