हिंदी

In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 Find the Number of Observations Lying Between ¯ X − M.D. and ¯ X + M.D, Where M.D. is the Mean Deviation from the Mean. - Mathematics

Advertisements
Advertisements

प्रश्न

In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.

योग

उत्तर

Let  \[ \bar {x} \] be the mean of the data set.

\[\bar{ x } = \frac{34 + 66 + 30 + 38 + 44 + 50 + 40 + 60 + 42 + 51}{10} = 45 . 5\]

\[MD = \frac{1}{n} \sum^n_{i = 1} \left| d_i \right|, \text{ where}  \left| d_i \right| = \left| x_i - x \right|\]

\[x_i\]
 
\[\left| d_i \right| = \left| x_i - 45 . 5 \right|\]
34 11.5
66 20.5
30 15.5
38 7.5
44 1.5
50 4.5
40 5.5
60 14.5
42 3.5
51 5.5
Total 90

\[MD = \frac{1}{10} \times 90 = 9\]

\[\bar{ x } - M . D . = 45 . 5 - 9 = 36 . 5\]

\[Also, \bar { x } + M . D . = 45 . 5 + 9 = 54 . 5\]

Hence, there are 6 observations between 36.5 and 54.5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.1 | Q 5.1 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the mean for the data.

Income per day in ₹ Number of persons
0-100 4
100-200 8
200-300 9
300-400 10
400-500 7
500-600 5
600-700 4
700-800 3

Find the mean deviation about median for the following data:

Marks Number of girls
0-10 6
10-20 8
20-30 14
30-40 16
40-50 4
50-60 2

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation about the median of the observation:

 22, 24, 30, 27, 29, 31, 25, 28, 41, 42


Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation from the mean for the  data:

 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Calculate the mean deviation from the mean for the  data:

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

 

Calculate the mean deviation from the mean for the  data:

 38, 70, 48, 40, 42, 55, 63, 46, 54, 44a


The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 

Find mean deviation from the mean also.

 

 


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation from the median for the data: 

xi 74 89 42 54 91 94 35
fi 20 12 2 4 5 3 4

Find the mean deviation from the mean for the data:

Classes 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800
Frequencies 4 8 9 10 7 5 4 3

 


Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

The age distribution of 100 life-insurance policy holders is as follows:

Age (on nearest birth day) 17-19.5 20-25.5 26-35.5 36-40.5 41-50.5 51-55.5 56-60.5 61-70.5
No. of persons 5 16 12 26 14 12 6 5

Calculate the mean deviation from the median age


Calculate mean deviation about median age for the age distribution of 100 persons given below:

Age: 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55
Number of persons 5 6 12 14 26 12 16 9

Calculate the mean deviation about the mean for the following frequency distribution:
 

Class interval: 0–4 4–8 8–12 12–16 16–20
Frequency 4 6 8 5 2

For a frequency distribution mean deviation from mean is computed by


The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.


Calculate the mean deviation from the median of the following data:

Class interval 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 4 5 3 6 2

Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.


Let X = {x ∈ N: 1 ≤ x ≤ 17} and Y = {ax + b: x ∈ X and a, b ∈ R, a > 0}. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to ______.


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

If the mean deviation of number 1, 1 + d, 1 + 2d, ..., 1 + 100d from their mean is 255, then d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×