Advertisements
Advertisements
प्रश्न
Find the mean deviation from the mean for the data:
Classes | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 | 500-600 | 600-700 | 700-800 |
Frequencies | 4 | 8 | 9 | 10 | 7 | 5 | 4 | 3 |
उत्तर
We will compute the mean deviation from the mean in the following way:
Classes |
\[f_i\]
|
Midpoints \[x_i\]
|
\[f_i x_i\]
|
\[\left| x_i - X \right|\]
\[\left| x_i - 358 \right|\]
|
\[f_i \left| x_i - X \right|\]
|
0−100 | 4 | 50 | 200 | 308 | 1232 |
100−200 | 8 | 150 | 1200 | 208 | 1664 |
200−300 | 9 | 250 | 2250 | 108 | 972 |
300−400 | 10 | 350 | 3500 | 8 | 80 |
400−500 | 7 | 450 | 3150 | 92 | 644 |
500−600 | 5 | 550 | 2750 | 192 | 960 |
600−700 | 4 | 650 | 2600 | 292 | 1168 |
700−800 | 3 | 750 | 2250 | 392 | 1176 |
\[\sum^8_{i = 1} f_i = 50\]
|
\[\sum^8_{i = 1} f_ix_i= 17900\]
|
\[\sum^8_{i = 1} f_i \left| x_i - X \right| = 7896\] |
\[N = \sum^6_{i = 1} f_i = 50\] and
\[\bar{ X } = \frac{\sum^{8} _{i = 1} f_i x_i}{\sum ^8_{i = 1} f_i} = \frac{17900}{50} = 358\]
\[\therefore \text{ Mean deviation } = \frac{1}{N} \sum^8_{i = 1} f_i \left| x_i - X \right|\]
\[ = \frac{7896}{50}\]
\[ = 157 . 92\]
APPEARS IN
संबंधित प्रश्न
Find the mean deviation about the mean for the data.
4, 7, 8, 9, 10, 12, 13, 17
Find the mean deviation about the mean for the data.
38, 70, 48, 40, 42, 55, 63, 46, 54, 44
Find the mean deviation about the median for the data.
13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17
Find the mean deviation about the mean for the data.
xi | 5 | 10 | 15 | 20 | 25 |
fi | 7 | 4 | 6 | 3 | 5 |
Calculate the mean deviation about median age for the age distribution of 100 persons given below:
Age | Number |
16 - 20 | 5 |
21 - 25 | 6 |
26 - 30 | 12 |
31 - 35 | 14 |
36 - 40 | 26 |
41 - 45 | 12 |
46 - 50 | 16 |
51 - 55 | 9 |
Calculate the mean deviation about the median of the observation:
38, 70, 48, 34, 42, 55, 63, 46, 54, 44
Calculate the mean deviation about the median of the observation:
22, 24, 30, 27, 29, 31, 25, 28, 41, 42
Calculate the mean deviation from the mean for the data:
4, 7, 8, 9, 10, 12, 13, 17
Calculate the mean deviation of the following income groups of five and seven members from their medians:
I Income in Rs. |
II Income in Rs. |
4000 4200 4400 4600 4800 |
300 4000 4200 4400 4600 4800 5800 |
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from median
The lengths (in cm) of 10 rods in a shop are given below:
40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2
Find mean deviation from the mean also.
In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between
\[\bar{ X } \] + M.D, where M.D. is the mean deviation from the mean.
In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between
\[\bar { X } \] − M.D. and
\[\bar { X } \] + M.D, where M.D. is the mean deviation from the mean.
Find the mean deviation from the mean for the data:
xi | 5 | 7 | 9 | 10 | 12 | 15 |
fi | 8 | 6 | 2 | 2 | 2 | 6 |
Find the mean deviation from the mean for the data:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Find the mean deviation from the mean for the data:
Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequencies | 6 | 8 | 14 | 16 | 4 | 2 |
Calculate mean deviation about median age for the age distribution of 100 persons given below:
Age: | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 |
Number of persons | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Calculate mean deviation from the median of the following data:
Class interval: | 0–6 | 6–12 | 12–18 | 18–24 | 24–30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is
Let \[x_1 , x_2 , . . . , x_n\] be n observations and \[X\] be their arithmetic mean. The standard deviation is given by
Find the mean deviation about the mean of the following data:
Size (x): | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
Frequency (f): | 3 | 3 | 4 | 14 | 7 | 4 | 3 | 4 |
The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is ______.
Find the mean deviation about the median of the following distribution:
Marks obtained | 10 | 11 | 12 | 14 | 15 |
No. of students | 2 | 3 | 8 | 3 | 4 |
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.
Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.
Mean and standard deviation of 100 items are 50 and 4, respectively. Find the sum of all the item and the sum of the squares of the items.
Find the mean and variance of the frequency distribution given below:
`x` | 1 ≤ x < 3 | 3 ≤ x < 5 | 5 ≤ x < 7 | 7 ≤ x < 10 |
`f` | 6 | 4 | 5 | 1 |
Calculate the mean deviation from the median of the following data:
Class interval | 0 – 6 | 6 – 12 | 12 – 18 | 18 – 24 | 24 – 30 |
Frequency | 4 | 5 | 3 | 6 | 2 |
Determine mean and standard deviation of first n terms of an A.P. whose first term is a and common difference is d.
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
Mean deviation for n observations x1, x2, ..., xn from their mean `barx` is given by ______.
The mean of 100 observations is 50 and their standard deviation is 5. The sum of all squares of all the observations is ______.
The mean and variance of seven observations are 8 and 16, respectively. If 5 of the observations are 2, 4, 10, 12, 14, then the product of the remaining two observations is ______.