हिंदी

Find the Mean Deviation from the Mean and from Median of the Following Distribution: Marks 0-10 10-20 20-30 30-40 40-50 No. of Students 5 8 15 16 6 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean deviation from the mean and from median of the following distribution:

Marks 0-10 10-20 20-30 30-40 40-50
No. of students 5 8 15 16 6

उत्तर

Computation of mean distribution from the median: 

Marks  Number of Students
\[f_i\]
Cumulative Frequency  Midpoints
\[x_i\]
 

\[\left| d_i \right| = \left| x_i - 28 \right|\]
 

\[f_i \left| d_i \right|\]
 

\[f_i x_i\]
 

\[\left| x_i - 27 \right|\]

 

\[f_i \left| x_i - 27 \right|\]
0−10 5 5 5 23 115 25 22 110
10−20 8 13 15 13 104 120 12 96
20−30 15 28 25 3 45 375 2 30
30−40 16 44 35 7 112 560 8 128
40−50 6 50 45 17 102 270 18 108
 
\[N = 50\]
       
 

\[\sum^5_{i = 1} f_i \left| d_i \right| = 478\]
          1350   \[\sum^5_{i = 1} f_i \left| x_i - 27 \right| = 472\]

 

\[N = 50 , \frac{N}{2} = 25\]

The cumulative frequency just greater than  \[\frac{N}{2} = 25\] is 28 and the corresponding class is 20−30.
Thus, the median class is 20−30.

Using formula:

\[\therefore l = 20, F = 13, f = 15, h = 10 \]
\[ \text{ Median }  = l + {\frac{\frac{N}{2} - F}{f}} \times h \]
\[\text{ Substituting the values: } \]
\[\text{ Median }  = 20 + {\frac{25 - 13}{15}} \times 10 \]
\[ = 20 + 8 \]
\[ = 28\]
\[\text{ Mean distribution from the median } = {\frac{\sum^5_{i = 1} f_i \left| d_i \right|}{N}} \]
\[ = {\frac{478}{50}}\]
\[ = 9 . 56\]
\[ \text{ Mean } (\bar  {X}) = {\frac{\sum^5_{i = 1} f_i x_i}{N}}\]
\[ = {\frac{1350}{50}}\]
\[ = 27\]
\[\text{ Mean deviation from the mean } ={\frac{1}{50}} \times \sum^5_{i = 1} f_i \left|  {x_i - 27} \right|\]
\[ ={\frac{472}{50}}\]
\[ = 9 . 44\]

 Mean deviation from the median and the mean are 9.56 and 9.44, respectively.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.3 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.3 | Q 5 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the mean deviation about the mean for the data.

4, 7, 8, 9, 10, 12, 13, 17


Find the mean deviation about the mean for the data.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44


Find the mean deviation about the median for the data.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17


Find the mean deviation about the mean for the data.

xi 10 30 50 70 90
fi 4 24 28 16 8

Find the mean deviation about the median for the data.

xi 15 21 27 30 35
fi 3 5 6 7 8

Find the mean deviation about the mean for the data.

Height in cms Number of boys
95 - 105 9
105 - 115 13
115 - 125 26
125 - 135 30
135 - 145 12
145 - 155 10

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age Number
16 - 20 5
21 - 25 6
26 - 30 12
31 - 35 14
36 - 40 26
41 - 45 12
46 - 50 16
51 - 55 9

Calculate the mean deviation about the median of the observation:

 38, 70, 48, 34, 42, 55, 63, 46, 54, 44


Calculate the mean deviation from the mean for the data: 

 4, 7, 8, 9, 10, 12, 13, 17


Calculate the mean deviation from the mean for the  data:

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

 

Calculate the mean deviation of the following income groups of five and seven members from their medians:

I
Income in Rs.
II
Income in Rs.
4000
4200
4400
4600
4800

 
 300
4000
4200
4400
4600
4800
5800

In 34, 66, 30, 38, 44, 50, 40, 60, 42, 51 find the number of observations lying between

\[\bar{ X } \]  − M.D. and

\[\bar{ X } \]  + M.D, where M.D. is the mean deviation from the mean.


In 38, 70, 48, 34, 63, 42, 55, 44, 53, 47 find the number of observations lying between

\[\bar { X } \]  − M.D. and

\[\bar { X } \]   + M.D, where M.D. is the mean deviation from the mean.


Find the mean deviation from the mean for the data:

xi 5 7 9 10 12 15
fi 8 6 2 2 2 6

Find the mean deviation from the mean for the data:

xi 5 10 15 20 25
fi 7 4 6 3 5

Find the mean deviation from the mean for the data:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation from the mean for the data:

Size 1 3 5 7 9 11 13 15
Frequency 3 3 4 14 7 4 3 4

Compute mean deviation from mean of the following distribution:

Mark 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
No. of students 8 10 15 25 20 18 9 5

Calculate mean deviation from the median of the following data: 

Class interval: 0–6 6–12 12–18 18–24 24–30
Frequency 4 5 3 6 2

For a frequency distribution mean deviation from mean is computed by


The mean deviation from the median is


A batsman scores runs in 10 innings as 38, 70, 48, 34, 42, 55, 63, 46, 54 and 44. The mean deviation about mean is


The mean deviation of the numbers 3, 4, 5, 6, 7 from the mean is


The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 from the mean is


Let \[x_1 , x_2 , . . . , x_n\]  be n observations and  \[X\]  be their arithmetic mean. The standard deviation is given by

 

Find the mean deviation about the mean of the distribution:

Size 20 21 22 23 24
Frequency 6 4 5 1 4

Find the mean deviation about the median of the following distribution:

Marks obtained 10 11 12 14 15
No. of students 2 3 8 3 4

Calculate the mean deviation about the mean for the following frequency distribution:

Class interval 0 – 4 4 – 8 8 – 12 12 – 16 16 – 20
Frequency 4 6 8 5 2

While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.


When tested, the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623 
The mean deviations (in hours) from their mean is ______.


If `barx` is the mean of n values of x, then `sum_(i = 1)^n (x_i - barx)` is always equal to ______. If a has any value other than `barx`, then `sum_(i = 1)^n (x_i - barx)^2` is ______ than `sum(x_i - a)^2`


Find the mean deviation about the mean for the data.

xi 5 10 15 20 25
fi 7 4 6 3 5

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×