рд╣рд┐рдВрджреА

Find the median from the following data: Marks No of students Below 10 12 Below 20 32 Below 30 57 Below 40 80 Below 50 92 Below 60 116 Below 70 164 Below 80 200 - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Find the median from the following data:

Marks No of students
Below 10 12
Below 20 32
Below 30 57
Below 40 80
Below 50 92
Below 60 116
Below 70 164
Below 80 200
рдпреЛрдЧ

рдЙрддреНрддрд░

Class frequency (f) cumulative frequency (f)
0 – 10 12 12
10 – 20 32 (32 - 12)
= 20
20 – 30 57 (57 - 32)
= 25
30 – 40 80 (80 - 57)
= 23
40 – 50 92 (92 - 80)
=12
50 – 60 116 (116 - 92)
= 24
60 – 70 164 (164 - 116)
= 48
70 – 80 200 (200 - 164)
= 36
    N = ΣЁЭСУ = 200

Now, N = 200
`⇒ N/2 = 100`.

The cumulative frequency just greater than 100 is 116 and the corresponding class is 50 – 60.
Thus, the median class is 50 – 60.
∴ l = 50, h = 10, f = 24, cf = c.f. of preceding class = 92 and `N/2` = 100.
∴ Median, `M = l + {h×((N/2−cf)/f)}`
             `= 50 + {10× ((100 − 92)/24)}`
             = 50 + 3.33
            = 53.33
Hence, median = 53.33.

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive - Exercises 2

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 9 Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
Exercises 2 | Q 14

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:

Number of letters Number of surnames
1 - 4 6
4 − 7 30
7 - 10 40
10 - 13 6
13 - 16 4
16 − 19 4

Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.


The median of the following data is 525. Find the missing frequency, if it is given that there are 100 observations in the data:

Class interval Frequency
0 - 100 2
100 - 200 5
200 - 300 f1
300 - 400 12
400 - 500 17
500 - 600 20
600 - 700 f2
700 - 800 9
800 - 900 7
900 - 1000 4

If the median of the following data is 32.5, find the missing frequencies.

Class interval: 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 Total
Frequency: f1 5 9 12 f2 3 2 40

What is the value of the median of the data using the graph in the following figure of less than ogive and more than ogive?


The abscissa of the point of intersection of less than type and of the more than types cumulative frequency curves of a grouped data gives its ______.


The following are the marks scored by the students in the Summative Assessment exam

Class 0 − 10 10 − 20 20 − 30 30 − 40 40 − 50 50 − 60
No. of Students 2 7 15 10 11 5

Calculate the median.


Mode and mean of a data are 12k and 15A. Median of the data is ______.


Find the values of a and b, if the sum of all the frequencies is 120 and the median of the following data is 55.

Marks 30 – 40 40 – 50 50 –60 60 – 70 70 –80 80 – 90
Frequency a 40 27 b 15 24

Heights of 50 students of class X of a school are recorded and following data is obtained:

Height (in cm) 130 – 135 135 – 140 140 – 145 145 – 150 150 – 155 155 – 160
Number of students 4 11 12 7 10 6

Find the median height of the students.


Consider the following frequency distribution:

Class 0 – 6 6 – 12 12 – 18 18 – 24 24 – 30
Frequency 12 10 15 8 11

The median class is:


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×