Advertisements
Advertisements
प्रश्न
The median of the following data is 525. Find the missing frequency, if it is given that there are 100 observations in the data:
Class interval | Frequency |
0 - 100 | 2 |
100 - 200 | 5 |
200 - 300 | f1 |
300 - 400 | 12 |
400 - 500 | 17 |
500 - 600 | 20 |
600 - 700 | f2 |
700 - 800 | 9 |
800 - 900 | 7 |
900 - 1000 | 4 |
उत्तर
Class interval | Frequency | Cumulative frequency |
0 - 100 | 2 | 2 |
100 - 200 | 5 | 7 |
200 - 300 | f1 | 7 + f1 |
300 - 400 | 12 | 19 + f1 |
400 - 500 | 17 | 36 + f1 |
500 - 600 | 20 | 56 + f1 |
600 - 700 | f2 | 56 + f1 + f2 |
700 - 800 | 9 | 65 + f1 + f2 |
800 - 900 | 7 | 72 + f1 + f2 |
900 - 1000 | 4 | 76 + f1 + f2 |
N = 100 |
Given median = 525
Then median class = 500 - 600
l = 500, f = 20, F = 36 + f1 and h = 600 - 500 = 100
Median `l+(N/2-F)/fxxh`
`rArr525=500+(50-(36+f1))/20xx100`
`rArr525-500=(50-36-f1)/20xx100`
⇒ 25 = (14 - f1) x 5
⇒ 25 = 70 - 5f1
⇒ 5f1 = 70 - 25
⇒ 5f1 = 45
⇒ f1 = 45/5 = 9
Given sum of frequencies = 100
⇒ 2 + 5 + f1 + 12 + 17 + 20 + f2 + 9 + 7 + 4 = 100
⇒ 2 + 5 + 9 + 12 + 17 + 20 + f2 + 9 + 7 + 4 = 100
⇒ 85 + f2 = 100
⇒ f2 = 100 - 85
⇒ f2 = 15
APPEARS IN
संबंधित प्रश्न
For a certain frequency distribution, the value of Mean is 101 and Median is 100. Find the value of Mode.
The marks obtained by 30 students in a class assignment of 5 marks are given below.
Marks | 0 | 1 | 2 | 3 | 4 | 5 |
No. of Students |
1 | 3 | 6 | 10 | 5 | 5 |
Calculate the mean, median and mode of the above distribution
Compute mean from the following data:
Marks | 0 – 7 | 7 – 14 | 14 – 21 | 21 – 28 | 28 – 35 | 35 – 42 | 42 – 49 |
Number of Students | 3 | 4 | 7 | 11 | 0 | 16 | 9 |
Calculate the median from the following frequency distribution table:
Class | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 | 40 – 45 |
Frequency | 5 | 6 | 15 | 10 | 5 | 4 | 2 | 2 |
The median of the following data is 16. Find the missing frequencies a and b if the total of frequencies is 70.
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
Frequency | 12 | a | 12 | 15 | b | 6 | 6 | 4 |
In the following data the median of the runs scored by 60 top batsmen of the world in one-day international cricket matches is 5000. Find the missing frequencies x and y.
Runs scored | 2500 – 3500 | 3500 – 4500 | 4500 – 5500 | 5500 – 6500 | 6500 – 7500 | 7500 - 8500 |
Number of batsman | 5 | x | y | 12 | 6 | 2 |
If the median of the data: 6, 7, x − 2, x, 17, 20, written in ascending order, is 16. Then x=
For the following distribution
Marks | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of Students | 3 | 9 | 13 | 10 | 5 |
the number of students who got marks less than 30 is?
The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its ______.
The following table gives the monthly consumption of electricity of 100 families:
Monthly Consumption (in units) |
130 – 140 | 140 – 150 | 150 – 160 | 160 – 170 | 170 – 180 | 180 – 190 | 190 – 200 |
Number of families |
5 | 9 | 17 | 28 | 24 | 10 | 7 |
Find the median of the above data.