рд╣рд┐рдВрджреА

In the following data the median of the runs scored by 60 top batsmen of the world in one-day international cricket matches is 5000. Find the missing frequencies x and y. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

In the following data the median of the runs scored by 60 top batsmen of the world in one-day international cricket matches is 5000. Find the missing frequencies x and y.

Runs scored 2500 – 3500 3500 – 4500 4500 – 5500 5500 – 6500 6500 – 7500 7500 - 8500
Number of batsman 5 x y 12 6 2
рдпреЛрдЧ

рдЙрддреНрддрд░

We prepare the cumulative frequency table, as shown below:

Runs scored Number of batsman `bb((f_i))` Cumulative Frequency (cf)
2500 – 3500 5 5
3500 – 4500 x 5 + x
4500 – 5500 y 5 + x + y
5500 – 6500 12 17 + x + y
6500 – 7500 6 23 + x + y
7500 – 8500 2 25 + x + y
Total N = ΣЁЭСУЁЭСЦ = 60  

Let x and y be the missing frequencies of class intervals 3500 – 4500 respectively. Then,

25 + x + y = 60 ⇒ x + y = 35            ……(1)

Median is 5000, which lies in 4500 – 5500.

So, the median class is 4500 – 5500.

∴ l = 4500, h = 1000, N = 60, f = y and cf = 5 + x

Now,

Median, `"M" = "i" + (("N"/2−"cf")/"f") × "h"`

`⇒ 5000 = 4500 + ((60/2 −(5+x))/ "y")× 1000`

 `⇒ 5000 - 4500 = ((30−5−x)/"y") × 1000`

`⇒ 500 = ((25−x)/"y") × 1000`

⇒ y = 50 – 2x

⇒ 35 – x = 50 – 2x         [From (1)]

⇒ 2x – x = 50 – 35

⇒ x = 15

∴ y = 35 – x      

⇒ y = 35 – 15

⇒ y = 20

Hence, x = 15 and y = 20.

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive - Exercises 2

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 9 Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
Exercises 2 | Q 9

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [4]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

If `sumf_ix_i=75 and sumfi=15` , then find the mean x .


If the median of the distribution given below is 28.5, find the values of x and y.

Class interval Frequency
0 - 10 5
10 - 20 x
20 - 30 20
30 - 40 15
40 - 50 y
50 - 60 5
Total 60

The marks obtained by 30 students in a class assignment of 5 marks are given below.

Marks 0 1 2 3 4 5
No. of
Students
1 3 6 10 5 5

Calculate the mean, median and mode of the above distribution


Calculate the median from the following frequency distribution table:

Class 5 – 10 10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 40 40 – 45
Frequency 5 6 15 10 5 4 2 2

 


Write the median class of the following distribution:

Class-interval: 0−10 10−20 20−30 30−40 40−50 50−60 60−70
Frequency: 4 4 8 10 12 8 4

If 35 is removed from the data: 30, 34, 35, 36, 37, 38, 39, 40, then the median increased by


In the following table, Σf = 200 and mean = 73. Find the missing frequencies f1, and f2.

x 0 50 100 150 200 250
f 46 f1 f2 25 10 5

Find the Median of the following distribution:

x 3 5 10 12 8 15
f 2 4 6 10 8 7

Pocket expenses of a class in a college are shown in the following frequency distribution:

Pocket expenses

0 - 200

200 - 400

400 - 600

600 - 800

800 - 1000

1000 - 1200

1200 - 1400

Number of students 33 74 170 88 76 44 25

Then the median for the above data is?


The following table shows classification of number of workers and number of hours they work in software company. Prepare less than upper limit type cumulative frequency distribution table:

Number of hours daily Number of workers
8 - 10 150
10 - 12 500
12 - 14 300
14 - 16 50

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×