Advertisements
Advertisements
प्रश्न
If the median of the distribution given below is 28.5, find the values of x and y.
Class interval | Frequency |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
उत्तर
The cumulative frequency for the given data is calculated as follows:
Class interval | Frequency | Cumulative frequency |
0 - 10 | 5 | 5 |
10 - 20 | x | 5+ x |
20-30 | 20 | 25 + x |
30 - 40 | 15 | 40 + x |
40 - 50 | y | 40+ x + y |
50 - 60 | 5 | 45 + x + y |
Total (n) | 60 |
From the table, it can be observed that n = 60
45 + x + y = 60
x + y = 15 (1)
the median of the data is given as 28.5, which lies in the intervals 20 − 30.
Therefore, the median class is 20 − 30
lower limit (l) of the median class is 20
Cumulative frequency (cf) of class preceding the median class = 5 + x
Frequency (f) of median class = 20
Class size (h) = 10
Median = `l + (((n/2)-cf)/f)xxh`
`28.5 = 20 + [(60/2-(5+x))/20]xx10`
`8.5 = ((25-x)/2)`
17 = 25 − x
8 + y = 15
y = 7
Hence, the values of x and y are 8 and 7, respectively.
संबंधित प्रश्न
The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day :
Age (in years) | No. of Patients |
10-20 | 60 |
20-30 | 42 |
30-40 | 55 |
40-50 | 70 |
50-60 | 53 |
60-70 | 20 |
Find the median age of the patients.
If `sumf_ix_i=75 and sumfi=15` , then find the mean x .
A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.
Age (in years) | Number of policy holders |
Below 20 | 2 |
20 - 25 | 4 |
25 - 30 | 18 |
30 - 35 | 21 |
35 - 40 | 33 |
40 - 45 | 11 |
45 - 50 | 3 |
50 - 55 | 6 |
55 - 60 | 2 |
For a certain frequency distribution, the values of Assumed mean (A) = 1300, `sumf_id_i` = 900 and `sumfi` = 100. Find the value of mean (`barx`) .
Following are the lives in hours of 15 pieces of the components of aircraft engine. Find the median:
715, 724, 725, 710, 729, 745, 694, 699, 696, 712, 734, 728, 716, 705, 719.
Calculate the missing frequency from the following distribution, it being given that the median of the distribution is 24.
Age in years | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
No. of persons | 5 | 25 | ? | 18 | 7 |
Find the missing frequencies and the median for the following distribution if the mean is 1.46.
No. of accidents: | 0 | 1 | 2 | 3 | 4 | 5 | Total |
Frequency (No. of days): | 46 | ? | ? | 25 | 10 | 5 | 200 |
The marks obtained by 19 students of a class are given below:
27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28.
Find:
- Median
- Lower quartile
- Upper quartile
- Inter-quartile range
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
Compute mean from the following data:
Marks | 0 – 7 | 7 – 14 | 14 – 21 | 21 – 28 | 28 – 35 | 35 – 42 | 42 – 49 |
Number of Students | 3 | 4 | 7 | 11 | 0 | 16 | 9 |
The median of the following data is 16. Find the missing frequencies a and b if the total of frequencies is 70.
Class | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
Frequency | 12 | a | 12 | 15 | b | 6 | 6 | 4 |
In the following data the median of the runs scored by 60 top batsmen of the world in one-day international cricket matches is 5000. Find the missing frequencies x and y.
Runs scored | 2500 – 3500 | 3500 – 4500 | 4500 – 5500 | 5500 – 6500 | 6500 – 7500 | 7500 - 8500 |
Number of batsman | 5 | x | y | 12 | 6 | 2 |
The following frequency distribution table shows the number of mango trees in a grove and their yield of mangoes, and also the cumulative frequencies. Find the median of the data.
Class (No. of mangoes) |
Frequency (No. of trees) |
Cumulative frequency (less than) |
50-100 | 33 | 33 |
100-150 | 30 | 63 |
150-200 | 90 | 153 |
200-250 | 80 | 233 |
250-300 | 17 | 250 |
The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90.
Marks: | 20 -30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
Frequency: | P | 15 | 25 | 20 | q | 8 | 10 |
The annual rainfall record of a city for 66 days is given in the following table :
Rainfall (in cm ): | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Number of days : | 22 | 10 | 8 | 15 | 5 | 6 |
Calculate the median rainfall using ogives of more than type and less than type.
If the mean of the following distribution is 3, find the value of p.
x | 1 | 2 | 3 | 5 | p + 4 |
f | 9 | 6 | 9 | 3 | 6 |
In the following table, Σf = 200 and mean = 73. Find the missing frequencies f1, and f2.
x | 0 | 50 | 100 | 150 | 200 | 250 |
f | 46 | f1 | f2 | 25 | 10 | 5 |
The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its ______.
Heights of 50 students of class X of a school are recorded and following data is obtained:
Height (in cm) | 130 – 135 | 135 – 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 |
Number of students | 4 | 11 | 12 | 7 | 10 | 6 |
Find the median height of the students.