Advertisements
Advertisements
प्रश्न
The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day :
Age (in years) | No. of Patients |
10-20 | 60 |
20-30 | 42 |
30-40 | 55 |
40-50 | 70 |
50-60 | 53 |
60-70 | 20 |
Find the median age of the patients.
उत्तर
Age (in years) | No. of Patients | c.f. (less than type) |
10-20 | 60 | 60 |
20-30 | 42 | 102 → c.f. |
30-40 Median class |
55 → f | 157 |
40-50 | 70 | 227 |
50-60 | 53 | 280 |
60-70 | 20 | 300 |
Here, N =` 300/2`
N=150
Cumulative frequency just greater than 150 is 157.
∴ Corresponding class (30 – 40) is the median class.
L = 30, f = 55, c.f. = 102, h = 10
`"Median =L"+("N"/2-"c.f")"h"/"f"`
=`30 + (150 - 102) xx(10/55)`
=`30+48 xx (10/55)`
= `30 + 480/55`
=30 + 8.7272
=38.73
Thus, the median age of patients is 38.73 years.
APPEARS IN
संबंधित प्रश्न
100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:
Number of letters | Number of surnames |
1 - 4 | 6 |
4 − 7 | 30 |
7 - 10 | 40 |
10 - 13 | 6 |
13 - 16 | 4 |
16 − 19 | 4 |
Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.
If the median of the distribution given below is 28.5, find the values of x and y.
Class interval | Frequency |
0 - 10 | 5 |
10 - 20 | x |
20 - 30 | 20 |
30 - 40 | 15 |
40 - 50 | y |
50 - 60 | 5 |
Total | 60 |
Calculate the median from the following data:
Marks below: | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
No. of students: | 15 | 35 | 60 | 84 | 96 | 127 | 198 | 250 |
From the following data, find:
Upper quartile
25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83
The ages of 37 students in a class are given in the following table:
Age (in years) | 11 | 12 | 13 | 14 | 15 | 16 |
Frequency | 2 | 4 | 6 | 10 | 8 | 7 |
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
The following frequency distribution table gives the ages of 200 patients treated in a hospital in a week. Find the mode of ages of the patients.
Age (years) | Less than 5 | 5 - 9 | 10 - 14 | 15 - 19 | 20 - 24 | 25 - 29 |
No. of patients | 38 | 32 | 50 | 36 | 24 | 20 |
The annual rainfall record of a city for 66 days is given in the following table :
Rainfall (in cm ): | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Number of days : | 22 | 10 | 8 | 15 | 5 | 6 |
Calculate the median rainfall using ogives of more than type and less than type.
Write the median class of the following distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 |
Frequency: | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
Find the median of the scores 7, 10, 5, 8, 9.
Below is the given frequency distribution of words in an essay:
Number of words | Number of Candidates |
600 - 800 | 12 |
800 - 1000 | 14 |
1000 - 1200 | 40 |
1200 - 1400 | 15 |
1400 - 1600 | 19 |
Find the mean number of words written.
The Median when it is given that mode and mean are 8 and 9 respectively, is ______.
Yoga is an ancient practice which is a form of meditation and exercise. By practising yoga, we not even make our body healthy but also achieve inner peace and calmness. The International Yoga Day is celebrated on the 21st of June every year since 2015. |
Age Group | 15 – 25 | 25 – 35 | 35 – 45 | 45 –55 | 55 –65 | 65 –75 | 75 – 85 |
Number of People |
8 | 10 | 15 | 25 | 40 | 24 | 18 |
Based on the above, find the following:
- Find the median age of people enrolled for the camp.
- If x more people of the age group 65 – 75 had enrolled for the camp, the mean age would have been 58. Find the value of x.
Find the median of the following distribution:
Marks | 0 – 10 | 10 –20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Number of students | 5 | 8 | 20 | 15 | 7 | 5 |
The median of the following frequency distribution is 25. Find the value of x.
Class: | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency: | 6 | 9 | 10 | 8 | x |
Find the modal and median classes of the following distribution.
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 11 | 22 | 19 | 18 | 7 |
If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately ______.
The empirical relation between the mode, median and mean of a distribution is ______.
The median of first seven prime numbers is ______.