Advertisements
Advertisements
प्रश्न
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
उत्तर
We prepare the cumulative frequency table, as shown below:
Age (in years) | Number of patients `(f_i)` | Cumulative Frequency (cf) |
0 – 15 | 5 | 5 |
15 – 30 | 20 | 25 |
30 – 45 | 40 | 65 |
45 – 60 | 50 | 115 |
60 – 75 | 25 | 140 |
Total | `N = Σ f_i` = 140 |
Now, N = 140 ⇒`N/2 = 70`
The cumulative frequency just greater than 70 is 115 and the corresponding class is 45 –60
Thus, the median class is 45 – 60.
∴ l = 45, h = 15, f = 50, N = 140 and cf = 65.
Now,
Median = l + `((N/2-cf)/f) xx h`
=`45 + ((140/2-65)/50) xx 15`
=`45+((70-65)/50) xx 15`
= 45 + 1.5
= 46.5
Hence, the median age is 46.5 years.
APPEARS IN
संबंधित प्रश्न
The following table shows ages of 3000 patients getting medical treatment in a hospital on a particular day :
Age (in years) | No. of Patients |
10-20 | 60 |
20-30 | 42 |
30-40 | 55 |
40-50 | 70 |
50-60 | 53 |
60-70 | 20 |
Find the median age of the patients.
For a certain frequency distribution, the value of mean is 20 and mode is 11. Find the value of median.
For a certain frequency distribution, the values of Assumed mean (A) = 1300, `sumf_id_i` = 900 and `sumfi` = 100. Find the value of mean (`barx`) .
Following is the distribution of I.Q. of loo students. Find the median I.Q.
I.Q.: | 55 - 64 | 65 - 74 | 75 - 84 | 85 - 94 | 95 - 104 | 105 - 114 | 115 - 124 | 125 - 134 | 135 - 144 |
No of Students: | 1 | 2 | 9 | 22 | 33 | 22 | 8 | 2 | 1 |
From the following data, find:
Median
25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83
Calculate the missing frequency from the following distribution, it being given that the median of distribution is 24.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 - 50 |
Frequency | 5 | 25 | ? | 18 | 7 |
The annual rainfall record of a city for 66 days is given in the following table :
Rainfall (in cm ): | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Number of days : | 22 | 10 | 8 | 15 | 5 | 6 |
Calculate the median rainfall using ogives of more than type and less than type.
Write the median class of the following distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 |
Frequency: | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
In a hospital, weights of new born babies were recorded, for one month. Data is as shown:
Weight of new born baby (in kg) | 1.4 - 1.8 | 1.8 - 2.2 | 2.2 - 2.6 | 2.6 - 3.0 |
No of babies | 3 | 15 | 6 | 1 |
Then the median weight is?
Heights of 50 students of class X of a school are recorded and following data is obtained:
Height (in cm) | 130 – 135 | 135 – 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 |
Number of students | 4 | 11 | 12 | 7 | 10 | 6 |
Find the median height of the students.