Advertisements
Advertisements
प्रश्न
From the following data, find:
Median
25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83
उत्तर
Arrange in ascending order:
0, 7, 10, 18, 25, 36, 38, 40, 45, 56, 60, 65, 77, 83, 88, 95
Median is the mean of 8th and 9th term
= `(40 + 45)/2`
= `85/2`
= 42.5
APPEARS IN
संबंधित प्रश्न
For a certain frequency distribution, the value of Mean is 101 and Median is 100. Find the value of Mode.
An incomplete distribution is given as follows:
Variable: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 |
Frequency: | 10 | 20 | ? | 40 | ? | 25 | 15 |
You are given that the median value is 35 and the sum of all the frequencies is 170. Using the median formula, fill up the missing frequencies.
A student got the following marks in 9 questions of a question paper.
3, 5, 7, 3, 8, 0, 1, 4 and 6.
Find the median of these marks.
The weights (in kg) of 10 students of a class are given below:
21, 28.5, 20.5, 24, 25.5, 22, 27.5, 28, 21 and 24.
Find the median of their weights.
Calculate the median from the following frequency distribution table:
Class | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 | 40 – 45 |
Frequency | 5 | 6 | 15 | 10 | 5 | 4 | 2 | 2 |
Find the median from the following data:
Class | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 35 – 40 | 40 – 45 |
Frequency | 7 | 10 | 16 | 32 | 24 | 16 | 11 | 5 | 2 |
The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90.
Marks: | 20 -30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 |
Frequency: | P | 15 | 25 | 20 | q | 8 | 10 |
The median of first 10 prime numbers is
The median of the following frequency distribution is 35. Find the value of x.
Class: | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency: | 6 | 3 | x | 12 | 19 |
Find the median of the following frequency distribution:
Class: | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency: | 6 | 8 | 5 | 9 | 7 |